Phân tích đa thức thành nhân tử: $6x^{4}$ + $5x^{3}$ – $14x^{2}$ +x +2 `\text{Cần gấp lm:(( Chiều nay nộp rồi…}` 20/09/2021 Bởi Adalynn Phân tích đa thức thành nhân tử: $6x^{4}$ + $5x^{3}$ – $14x^{2}$ +x +2 `\text{Cần gấp lm:(( Chiều nay nộp rồi…}`
$ 6x^4 +5x^3 -14x^2 +x +2$ $= 6x^4 + 11x^3 -3x^2 -2x – 6x^3 – 11x^2 + 3x +2$ $ = x(6x^3 + 11x^2 -3x -2) – (6x^3+11x^2 -3x-2) $ $ = (x-1)(6x^3+11x^2 -3x-2) $ $ = (x-1)(6x^3 +9x -6x + 2x^2 +3x -2)= (x-1)[ 3x(2x^2 + 3x -2) + (2x^2+3x-2)]$ $ = (x-1)(3x+1)(2x^2+3x-2) = (x-1)(3x+1)(2x^2 +4x – x -2) = (x-1)(3x+1)[2x(x+2) – (x+2)]$ $ = (x-1)(3x+1)(2x-1)(x+2)$ Bình luận
`6x^4+5x^3-14x^2+x+2` `=6x^4-6x^3+11x^3-11x^2-3x^2+3x-2x+2` `=(6x^4-6x^3)+(11x^3-11x^2)-(3x^2-3x)-(2x-2)` `=6x^3(x-1)+11x^2(x-1)-3x(x-1)-2(x-1)` `=(6x^3+11x^2-3x-2)(x-1)` `=(6x^3-3x^2+14x^2-7x+4x-2)(x-1)` `=[(6x^3-3x^2)+(14x^2-7x)+(4x-2)](x-1)` `=[3x^2(2x-1)+7x(2x-1)+2(2x-1)](x-1)` `=(2x-1)(3x^2+7x+2)(x-1)` `=(2x-1)(3x^2+6x+x+2)(x-1)` `=(2x-1)[(3x^2+6x)+(x+2)](x-1)` `=(2x-1)[3x(x+2)+(x+2)](x-1)` `=(2x-1)(x+2)(3x+1)(x-1)` Bình luận
$ 6x^4 +5x^3 -14x^2 +x +2$
$= 6x^4 + 11x^3 -3x^2 -2x – 6x^3 – 11x^2 + 3x +2$
$ = x(6x^3 + 11x^2 -3x -2) – (6x^3+11x^2 -3x-2) $
$ = (x-1)(6x^3+11x^2 -3x-2) $
$ = (x-1)(6x^3 +9x -6x + 2x^2 +3x -2)= (x-1)[ 3x(2x^2 + 3x -2) + (2x^2+3x-2)]$
$ = (x-1)(3x+1)(2x^2+3x-2) = (x-1)(3x+1)(2x^2 +4x – x -2) = (x-1)(3x+1)[2x(x+2) – (x+2)]$
$ = (x-1)(3x+1)(2x-1)(x+2)$
`6x^4+5x^3-14x^2+x+2`
`=6x^4-6x^3+11x^3-11x^2-3x^2+3x-2x+2`
`=(6x^4-6x^3)+(11x^3-11x^2)-(3x^2-3x)-(2x-2)`
`=6x^3(x-1)+11x^2(x-1)-3x(x-1)-2(x-1)`
`=(6x^3+11x^2-3x-2)(x-1)`
`=(6x^3-3x^2+14x^2-7x+4x-2)(x-1)`
`=[(6x^3-3x^2)+(14x^2-7x)+(4x-2)](x-1)`
`=[3x^2(2x-1)+7x(2x-1)+2(2x-1)](x-1)`
`=(2x-1)(3x^2+7x+2)(x-1)`
`=(2x-1)(3x^2+6x+x+2)(x-1)`
`=(2x-1)[(3x^2+6x)+(x+2)](x-1)`
`=(2x-1)[3x(x+2)+(x+2)](x-1)`
`=(2x-1)(x+2)(3x+1)(x-1)`