Phân tích đa thức thành nhân tử P = $a^{3}$ (b – c) + $b^{3}$ (c – a) + $c^{3}$ (a – b) 05/10/2021 Bởi Everleigh Phân tích đa thức thành nhân tử P = $a^{3}$ (b – c) + $b^{3}$ (c – a) + $c^{3}$ (a – b)
Đáp án : `P=(b-c)(a-b)(a-c)(a+b+c)` Giải thích các bước giải : `P=a^3(b-c)+b^3(c-a)+c^3(a-b)``<=>P=a^3(b-c)+b^3(c-b+b-a)+c^3(a-b)``<=>P=a^3(b-c)+b^3[-(b-c)-(a-b)]+c^3(a-b)``<=>P=a^3(b-c)-b^3[(b-c)+(a-b)]+c^3(a-b)``<=>P=a^3(b-c)-b^3(b-c)-b^3(a-b)+c^3(a-b)``<=>P=(b-c)(a^3-b^3)+(a-b)(c^3-b^3)``<=>P=(b-c)(a^3-b^3)-(a-b)(b^3-c^3)``<=>P=(b-c)(a-b)(a^2+ab+b^2)-(a-b)(b-c)(b^2+bc+c^2)``<=>P=(b-c)(a-b)[(a^2+ab+b^2)-(b^2+bc+c^2)]``<=>P=(b-c)(a-b)[a^2+ab+b^2-b^2-bc-c^2]``<=>P=(b-c)(a-b)[a^2+ab-bc-c^2]``<=>P=(b-c)(a-b)[(a^2-c^2)+(ab-bc)]``<=>P=(b-c)(a-b)[(a-c)(a+c)+b(a-c)]``<=>P=(b-c)(a-b)(a-c)(a+b+c)`Vậy : `P=(b-c)(a-b)(a-c)(a+b+c)` Bình luận
a³(b – c) + b³(c – a) + c³(a – b) = a³(b – c) + b³(c – a + b – b) + c³(a – b) = a³(b – c) + b³[ (c – b) + (b – a) ] + c³(a – b) = a³(b – c) + b³(c – b) + b³(b – a) + c³(a – b) = a³(b – c) – b³(b – c) – b³(a – b) + c³(a – b) = [ a³(b – c) – b³(b – c) ] + [ c³(a – b) – b³(a – b) ] = (b – c)(a³ – b³) + (a – b)(c³ – b³) = (b – c)(a – b)(a² + ab + b²) + (a – b)(c – b)(c² + cb + b²) = (b – c)(a – b)(a² + ab + b²) – (a – b)(b – c)(c² + cb + b²) = (b – c)(a – b)[ (a² + ab + b²) – (c² + cb + b²) ] = (b – c)(a – b)(a² + ab + b² – c² – cb – b²) = (b – c)(a – b)(a² + ab – c² – cb) = (b – c)(a – b)[ (a² – c²) + (ab + cb) ] = (b – c)(a – b)[ (a – c)(a + c) + b(a + c) ] = (b – c)(a – b)[ (a – c)(a + c + b) ] = (b – c)(a – b)(a – c)(a + c + b) Vậy a³(b – c) + b³(c – a) + c³(a – b) = (b – c)(a – b)(a – c)(a + c + b) Bình luận
Đáp án :
`P=(b-c)(a-b)(a-c)(a+b+c)`
Giải thích các bước giải :
`P=a^3(b-c)+b^3(c-a)+c^3(a-b)`
`<=>P=a^3(b-c)+b^3(c-b+b-a)+c^3(a-b)`
`<=>P=a^3(b-c)+b^3[-(b-c)-(a-b)]+c^3(a-b)`
`<=>P=a^3(b-c)-b^3[(b-c)+(a-b)]+c^3(a-b)`
`<=>P=a^3(b-c)-b^3(b-c)-b^3(a-b)+c^3(a-b)`
`<=>P=(b-c)(a^3-b^3)+(a-b)(c^3-b^3)`
`<=>P=(b-c)(a^3-b^3)-(a-b)(b^3-c^3)`
`<=>P=(b-c)(a-b)(a^2+ab+b^2)-(a-b)(b-c)(b^2+bc+c^2)`
`<=>P=(b-c)(a-b)[(a^2+ab+b^2)-(b^2+bc+c^2)]`
`<=>P=(b-c)(a-b)[a^2+ab+b^2-b^2-bc-c^2]`
`<=>P=(b-c)(a-b)[a^2+ab-bc-c^2]`
`<=>P=(b-c)(a-b)[(a^2-c^2)+(ab-bc)]`
`<=>P=(b-c)(a-b)[(a-c)(a+c)+b(a-c)]`
`<=>P=(b-c)(a-b)(a-c)(a+b+c)`
Vậy : `P=(b-c)(a-b)(a-c)(a+b+c)`
a³(b – c) + b³(c – a) + c³(a – b)
= a³(b – c) + b³(c – a + b – b) + c³(a – b)
= a³(b – c) + b³[ (c – b) + (b – a) ] + c³(a – b)
= a³(b – c) + b³(c – b) + b³(b – a) + c³(a – b)
= a³(b – c) – b³(b – c) – b³(a – b) + c³(a – b)
= [ a³(b – c) – b³(b – c) ] + [ c³(a – b) – b³(a – b) ]
= (b – c)(a³ – b³) + (a – b)(c³ – b³)
= (b – c)(a – b)(a² + ab + b²) + (a – b)(c – b)(c² + cb + b²)
= (b – c)(a – b)(a² + ab + b²) – (a – b)(b – c)(c² + cb + b²)
= (b – c)(a – b)[ (a² + ab + b²) – (c² + cb + b²) ]
= (b – c)(a – b)(a² + ab + b² – c² – cb – b²)
= (b – c)(a – b)(a² + ab – c² – cb)
= (b – c)(a – b)[ (a² – c²) + (ab + cb) ]
= (b – c)(a – b)[ (a – c)(a + c) + b(a + c) ]
= (b – c)(a – b)[ (a – c)(a + c + b) ]
= (b – c)(a – b)(a – c)(a + c + b)
Vậy a³(b – c) + b³(c – a) + c³(a – b) = (b – c)(a – b)(a – c)(a + c + b)