Phần tích đã thức thành nhân tử xy(x+y) +yz(y+z) +xz(x+z) +2xyz 04/07/2021 Bởi Adalyn Phần tích đã thức thành nhân tử xy(x+y) +yz(y+z) +xz(x+z) +2xyz
Đáp án: $\text{(y + z).(x + y).(z + x).}$ Giải thích các bước giải: $\text{xy.(x + y) + yz.(y + z) +xz.(x + z) + 2xyz.}$ $\text{= yz.(y + z) + xy.(x + y) + xz.(x + z) + 2xyz.}$ $\text{= yz.(y + z) + x.(x + y + z).(y + z).}$ $\text{= (y + z).[yz + x.(x + y + z)].}$ $\text{= (y + z).[yz + $x^2$ + xy + xz].}$ $\text{= (y + z).[(yz + xz) + ($x^2$ + xy)].}$ $\text{= (y + z).[z.(x + y) + x.(x + y)].}$ $\text{= (y + z).(x + y).(z + x).}$ Bình luận
xy(x+y)+yz(y+z)+xz(x+z)+2xyz= xy(x + y) + yz(y + z) + xz.y + xz(x + z) + xz.y= xy(x + y) + yz(y + z + x) + xz(x + z + y)= xy(x + y) + z(x + y + z)(y + x)= (x + y)(xy + zx + zy + z²)= (x + y)[x(y + z) + z(y + z)]= (x + y)(y + z)(z + x) Bình luận
Đáp án:
$\text{(y + z).(x + y).(z + x).}$
Giải thích các bước giải:
$\text{xy.(x + y) + yz.(y + z) +xz.(x + z) + 2xyz.}$
$\text{= yz.(y + z) + xy.(x + y) + xz.(x + z) + 2xyz.}$
$\text{= yz.(y + z) + x.(x + y + z).(y + z).}$
$\text{= (y + z).[yz + x.(x + y + z)].}$
$\text{= (y + z).[yz + $x^2$ + xy + xz].}$
$\text{= (y + z).[(yz + xz) + ($x^2$ + xy)].}$
$\text{= (y + z).[z.(x + y) + x.(x + y)].}$
$\text{= (y + z).(x + y).(z + x).}$
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xz.y + xz(x + z) + xz.y
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)