phân tích thành nhân tử 1) x^2 – 7xy + 10y^2 2) x^3 – 5x^2 – 14x 3) x^2.yz + 5xyz – 14yz 4) a^4 + 4a^2 – 5 5) x^3 + 4x^2 – 29x +24

phân tích thành nhân tử
1) x^2 – 7xy + 10y^2
2) x^3 – 5x^2 – 14x
3) x^2.yz + 5xyz – 14yz
4) a^4 + 4a^2 – 5
5) x^3 + 4x^2 – 29x +24

0 bình luận về “phân tích thành nhân tử 1) x^2 – 7xy + 10y^2 2) x^3 – 5x^2 – 14x 3) x^2.yz + 5xyz – 14yz 4) a^4 + 4a^2 – 5 5) x^3 + 4x^2 – 29x +24”

  1. $1)_{}$ $x^2-7xy+10y^2_{}$

    $⇔x^2-5xy-2xy+10y^2_{}$

    $⇔x.(x-5y)-2y.(x-5y)_{}$

    $⇔(x-2y)(x-5y)_{}$

    $2)_{}$ $x^3-5x^2-14x_{}$

    $⇔x^3+2x^2-7x^2-14x_{}$

    $⇔x^2.(x+2)-7x.(x+2)_{}$

    $⇔(x^2-7x).(x+2)_{}$

    $⇔x.(x-7)(x+2)_{}$

    $3)_{}$ $x^2yz+5xyz-14yz_{}$

    $⇔yz.(x^2+5x-14)_{}$

    $⇔yz.(x^2+7x-2x-14)_{}$

    $⇔yz.[ x.(x+7)-2.(x+7)]_{}$

    $⇔yz.(x+7).(x-2)_{}$

    $5)_{}$ $x^3+4x^2-29x+24_{}$

    $⇔x^3-x^2+5x^2-5x-24x+24_{}$

    $⇔x^2.(x-1)+5x.(x-1)-24.(x-1)_{}$

    $⇔(x-1).(x^2+5x-24)_{}$

    $⇔(x-1)(x^2+8x-3x-24)_{}$

    $⇔(x-1). [ x.(x+8)-3.(x+8)]_{}$

    $⇔(x-1)(x+8)(x-3)_{}$

    $4)_{}$ $a^4+4a^2-5_{}$

    $⇔a^4+5a^2-a^2-5_{}$

    $⇔a^2.(a^2+5)-(a^2+5)_{}$

    $⇔(a^2+5)(a^2-1)_{}$

    $⇔(a^2+5)(a-1)(a+1)_{}$

    Bình luận
  2. $1)x²-7xy+10y²$

    $=x²-2xy-5xy+10y²$

    $=x(x-2y)-5y(x-2y)$

    $=(x-5y)(x-2y)$

    $2)x³-5x²-14x$

    $=x³+2x²-7x²-14x$

    $=x²(x+2)-7x(x+2)$

    $=(x²-7x)(x+2)$

    $=x(x-7)(x+2)$

    $3)x²yz+5xyz-14yz$

    $=x²yz-2xyz+7xyz-14yz$

    $=xyz(x-2)+7yz(x-2)$

    $=(xyz+7yz)(x-2)$

    $=yz(x+7)(x-2)$

    $4)a^4+4a²-5$

    $=a^4-a²+5a²-5$

    $=a²(a²-1)+5(a²-1)$

    $=(a²+5)(a²-1)$

    $=(a²+5)(a-1)(a+1)$

    $5)x³+4x²-29x+24$

    $=x³-x²+5x²-5x-24x+24$

    $=x²(x-1)+5x(x-1)-24(x-1)$

    $=(x²+5x-24)(x-1)$

    $=(x²+8x-3x-24)(x-1)$

    $=[x(x+8)-3(x+8)](x-1)$

    $=(x-3)(x+8)(x-1)$

    Bình luận

Viết một bình luận