Phép chia phân thức sau 2x-1/2x+1:(2x-1+2-4x/2x+1) 29/08/2021 Bởi Ruby Phép chia phân thức sau 2x-1/2x+1:(2x-1+2-4x/2x+1)
Đáp án: $\begin{array}{l}\frac{{2x – 1}}{{2x + 1}}:\left( {2x – 1 + \frac{{2 – 4x}}{{2x + 1}}} \right)\\ = \frac{{2x – 1}}{{2x + 1}}:\left( {\frac{{\left( {2x – 1} \right)\left( {2x + 1} \right) + 2 – 4x}}{{2x + 1}}} \right)\\ = \frac{{2x – 1}}{{2x + 1}}.\frac{{2x + 1}}{{4{x^2} – 1 + 2 – 4x}}\\ = \frac{{2x – 1}}{{4{x^2} – 4x + 1}}\\ = \frac{{2x – 1}}{{{{\left( {2x – 1} \right)}^2}}} = \frac{1}{{2x – 1}}\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
\frac{{2x – 1}}{{2x + 1}}:\left( {2x – 1 + \frac{{2 – 4x}}{{2x + 1}}} \right)\\
= \frac{{2x – 1}}{{2x + 1}}:\left( {\frac{{\left( {2x – 1} \right)\left( {2x + 1} \right) + 2 – 4x}}{{2x + 1}}} \right)\\
= \frac{{2x – 1}}{{2x + 1}}.\frac{{2x + 1}}{{4{x^2} – 1 + 2 – 4x}}\\
= \frac{{2x – 1}}{{4{x^2} – 4x + 1}}\\
= \frac{{2x – 1}}{{{{\left( {2x – 1} \right)}^2}}} = \frac{1}{{2x – 1}}
\end{array}$