phương trình tiếp tuyến của đồ thị hàm số (C) y=1-x / 2x+1 tại giao điểm (C) với trục hoành là 02/08/2021 Bởi Adeline phương trình tiếp tuyến của đồ thị hàm số (C) y=1-x / 2x+1 tại giao điểm (C) với trục hoành là
Giao điểm của (C) với trục hoành là khi tung độ bằng 0. Khi đó ta có $\dfrac{1-x}{2x+1} = 0$Vậy $x = 1$ Vậy giao điểm với trục hoành là A(1,0). Lại có $y’ = \dfrac{-1(2x+1) – (1-x).2}{(2x+1)^2} = \dfrac{-3}{(2x+1)^2}$ Ta có ptrinh giao tuyến tại điểm $M(x_0, y_0)$ bất kỳ $y = f'(x_0) (x-x_0) + y_0$ Áp dụng vào bài này với $A(1,0)$ ta có $y = y'(1) (x-1) + 0$ $<-> y = \dfrac{-3}{(2+1)^2} (x-1)$ $<-> y = -\dfrac{1}{3} x + \dfrac{1}{3}$ Bình luận
Giao điểm của (C) với trục hoành là khi tung độ bằng 0. Khi đó ta có
$\dfrac{1-x}{2x+1} = 0$
Vậy $x = 1$
Vậy giao điểm với trục hoành là A(1,0).
Lại có
$y’ = \dfrac{-1(2x+1) – (1-x).2}{(2x+1)^2} = \dfrac{-3}{(2x+1)^2}$
Ta có ptrinh giao tuyến tại điểm $M(x_0, y_0)$ bất kỳ
$y = f'(x_0) (x-x_0) + y_0$
Áp dụng vào bài này với $A(1,0)$ ta có
$y = y'(1) (x-1) + 0$
$<-> y = \dfrac{-3}{(2+1)^2} (x-1)$
$<-> y = -\dfrac{1}{3} x + \dfrac{1}{3}$