9/ Chứng minh rằng: a) a^2+2a+b^2+1>hoặc = 0 với mọi giá trị của a và b b) x^2+y^2+2xy+4>0 với mọi giá trị của x và y c) (x-3).(x-5)+2>0 với mọi giá

Question

9/ Chứng minh rằng:
a) a^2+2a+b^2+1>hoặc = 0 với mọi giá trị của
a và b
b) x^2+y^2+2xy+4>0 với mọi giá trị của x và y
c) (x-3).(x-5)+2>0 với mọi giá trị của x

in progress 0
Savannah 2 ngày 2021-09-11T21:01:14+00:00 1 Answers 2 views 0

Answers ( )

    0
    2021-09-11T21:02:15+00:00

    Đáp án:

    Giải thích các bước giải:

    a,
    \[{a^2} + 2a + {b^2} + 1 = \left( {{a^2} + 2a + 1} \right) + {b^2} = {\left( {a + 1} \right)^2} + {b^2} \ge 0\]
    b,\[{x^2} + {y^2} + 2xy + 4 = \left( {{x^2} + 2xy + {y^2}} \right) + 4 = {\left( {x + y} \right)^2} + 4 > 0\]
    c,
    \[\begin{array}{l}
    \left( {x – 3} \right)\left( {x – 5} \right) + 2 = {x^2} – 8x + 15 + 2\\
    = {x^2} – 8x + 17\\
    = \left( {{x^2} – 8x + 16} \right) + 1 = {\left( {x – 4} \right)^2} + 1 > 0
    \end{array}\]

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )