Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=mx^3-3mx^2+3m-3 có hai điểm cực trị A B, sao cho 2AB^2-(OA^2+OB^2)=20 ( trong đó O là gốc

Question

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=mx^3-3mx^2+3m-3 có hai điểm cực trị A B, sao cho 2AB^2-(OA^2+OB^2)=20 ( trong đó O là gốc tọa độ).

in progress 0
Clara 3 tuần 2021-08-20T05:17:59+00:00 2 Answers 20 views 0

Answers ( )

    0
    2021-08-20T05:19:03+00:00

    Ta có: đạo hàm y’ = m( 3x2-6x). Để hàm số đã cho  có 2 điểm cực trị thì m≠ 0.

    Với mọi m≠ 0 , ta có

     y`=0⇔[x=0⇒y=3m-3 ; x=2⇒y=-m-3

    Gọi tọa độ 2 điểm cực trị là A( 0 ; 3m-3) và B( 2 ; -m-3)

    Ta có :

     

    hoặc m=-1711

    Vậy giá trị m cần tìm là

    [ m=1 ; m=-17/11

     cho xin trả lời hay nhất với 

    0
    2021-08-20T05:19:03+00:00

    Đáp án:

    `m=1` hoặc `m=-17/17`

    Giải thích các bước giải:

    Ta có: `y’=3mx^2-6mx=m(3x^2-6x)`

    Với mọi `mne0` ta có `y’=0⇔` \(\left[ \begin{array}{l}x=0⇒y=3m-3\\x=2⇒y=-m-3\end{array} \right.\)

    Vậy hàm số luôn có hai điểm cực trị

    Tọa độ các điểm cực trị `A(0;3m-3),B(2;-m-3)`

    Theo đề bài: `2AB^2-(OA^2+OB^2)=20`

    `⇔ 11m^2+6m-17=0`

    `⇔` \(\left[ \begin{array}{l}m=1\\m=\frac{-17}{11}\end{array} \right.\) $\text{(thỏa mãn)}$

    vậy giá trị m cần tìm là `m=1` hoặc `m=-17/17`

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )