rút gọn A= 2.(3^2+1).(3^4+1).(3^8+10.(3^16+1).(3^32+1) 10/07/2021 Bởi Mackenzie rút gọn A= 2.(3^2+1).(3^4+1).(3^8+10.(3^16+1).(3^32+1)
Đáp án: $A=\frac{3^{64}-1}{4}$ Giải thích các bước giải: A=$2.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$ ⇒4A=$8.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$ $=(3^2-1).(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$ $=(3^4-1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$ $=(3^8-1).(3^{16}+1).(3^{32}+1)$ $=(3^{16}-1).(3^{16}+1).(3^{32}+1)$ $=(3^{32}-1).(3^{32}+1)$ $=3^{64}-1$ $⇒A=\frac{3^{64}-1}{4}$ Bình luận
Đáp án: Ta có : `A = 2.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)` `=> 4A = 8.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)` `=> 4A = (3^2 – 1)(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)` `=> 4A = (3^4 – 1)(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)` `=> 4A = (3^8 – 1)(3^8+1).(3^{16}+1).(3^{32}+1)` `=> 4A = (3^{16} – 1)(3^{16}+1).(3^{32}+1)` `=> 4A = (3^{32} – 1)(3^{32} + 1)` `=> 4A = 3^{64} – 1` `=> A = (3^{64} – 1)/4` Giải thích các bước giải: Bình luận
Đáp án:
$A=\frac{3^{64}-1}{4}$
Giải thích các bước giải:
A=$2.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$
⇒4A=$8.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$
$=(3^2-1).(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$
$=(3^4-1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$
$=(3^8-1).(3^{16}+1).(3^{32}+1)$
$=(3^{16}-1).(3^{16}+1).(3^{32}+1)$
$=(3^{32}-1).(3^{32}+1)$
$=3^{64}-1$
$⇒A=\frac{3^{64}-1}{4}$
Đáp án:
Ta có :
`A = 2.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)`
`=> 4A = 8.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)`
`=> 4A = (3^2 – 1)(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)`
`=> 4A = (3^4 – 1)(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)`
`=> 4A = (3^8 – 1)(3^8+1).(3^{16}+1).(3^{32}+1)`
`=> 4A = (3^{16} – 1)(3^{16}+1).(3^{32}+1)`
`=> 4A = (3^{32} – 1)(3^{32} + 1)`
`=> 4A = 3^{64} – 1`
`=> A = (3^{64} – 1)/4`
Giải thích các bước giải: