rút gọn A= 2.(3^2+1).(3^4+1).(3^8+10.(3^16+1).(3^32+1)

rút gọn
A= 2.(3^2+1).(3^4+1).(3^8+10.(3^16+1).(3^32+1)

0 bình luận về “rút gọn A= 2.(3^2+1).(3^4+1).(3^8+10.(3^16+1).(3^32+1)”

  1. Đáp án:

    $A=\frac{3^{64}-1}{4}$ 

    Giải thích các bước giải:

     A=$2.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$

    ⇒4A=$8.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$

       $=(3^2-1).(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$

    $=(3^4-1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)$

    $=(3^8-1).(3^{16}+1).(3^{32}+1)$

    $=(3^{16}-1).(3^{16}+1).(3^{32}+1)$

    $=(3^{32}-1).(3^{32}+1)$

    $=3^{64}-1$

    $⇒A=\frac{3^{64}-1}{4}$ 

    Bình luận
  2. Đáp án:

    Ta có : 

    `A = 2.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)`  

    `=> 4A = 8.(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)`

    `=> 4A = (3^2 – 1)(3^2+1).(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)`

    `=> 4A = (3^4 – 1)(3^4+1).(3^8+1).(3^{16}+1).(3^{32}+1)`

    `=> 4A = (3^8 – 1)(3^8+1).(3^{16}+1).(3^{32}+1)`

    `=> 4A = (3^{16} – 1)(3^{16}+1).(3^{32}+1)`

    `=> 4A = (3^{32} – 1)(3^{32} + 1)`

    `=> 4A = 3^{64} – 1`

    `=> A = (3^{64} – 1)/4`

    Giải thích các bước giải:

     

    Bình luận

Viết một bình luận