rút gọn A=(2√x -3)(√x+3) – (√3 -2)(√x+1) 13/07/2021 Bởi Ruby rút gọn A=(2√x -3)(√x+3) – (√3 -2)(√x+1)
Giải thích các bước giải: `A=(2sqrtx -3)(sqrtx+3) – (sqrt3 -2)(sqrtx+1)` `=2x+6sqrtx-3sqrtx-9-(sqrt(3x)+sqrt3-2sqrtx-2)` `=2x+3sqrtx-9-sqrt(3x)-sqrt3+2sqrtx+2` `=2x+5sqrtx-sqrt(3x)-7-sqrt3` Bình luận
$A=(2\sqrt{x}-3)(\sqrt{x}+3)-(\sqrt{3}-2)(\sqrt{x}+1)$ $=2x+6\sqrt{x}-3\sqrt{x}-9-\sqrt{3x}-\sqrt{3}+2\sqrt{x}+2$ $=2x+(5-\sqrt{3})\sqrt{x}-\sqrt{3}-7$. Bình luận
Giải thích các bước giải:
`A=(2sqrtx -3)(sqrtx+3) – (sqrt3 -2)(sqrtx+1)`
`=2x+6sqrtx-3sqrtx-9-(sqrt(3x)+sqrt3-2sqrtx-2)`
`=2x+3sqrtx-9-sqrt(3x)-sqrt3+2sqrtx+2`
`=2x+5sqrtx-sqrt(3x)-7-sqrt3`
$A=(2\sqrt{x}-3)(\sqrt{x}+3)-(\sqrt{3}-2)(\sqrt{x}+1)$
$=2x+6\sqrt{x}-3\sqrt{x}-9-\sqrt{3x}-\sqrt{3}+2\sqrt{x}+2$
$=2x+(5-\sqrt{3})\sqrt{x}-\sqrt{3}-7$.