Rút gọn:
a) A= √(1-√3)^2 – √(√3+2)^2
b) B= √(2-√3)^2 – √4-2√3
c) C= √15-6√6 + √33-12√6
d) D= √2-√3 – √2+√3
Rút gọn: a) A= √(1-√3)^2 – √(√3+2)^2 b) B= √(2-√3)^2 – √4-2√3 c) C= √15-6√6 + √33-12√6 d) D= √2-√3 – √2+√3
By Reese
By Reese
Rút gọn:
a) A= √(1-√3)^2 – √(√3+2)^2
b) B= √(2-√3)^2 – √4-2√3
c) C= √15-6√6 + √33-12√6
d) D= √2-√3 – √2+√3
Đáp án:
\(D = – \sqrt 2 \)
Giải thích các bước giải:
\(\begin{array}{l}
\sqrt {{{\left( {1 – \sqrt 3 } \right)}^2}} – \sqrt {{{\left( {\sqrt 3 + 2} \right)}^2}} \\
= \left| {1 – \sqrt 3 } \right| – \left| {\sqrt 3 + 2} \right|\\
= \sqrt 3 – 1 – \left( { – \sqrt 3 – 2} \right)\left( {do:1 < \sqrt 3 < 2} \right)\\
= \sqrt 3 – 1 + \sqrt 3 + 2\\
= 2\sqrt 3 + 1\\
b.B = \sqrt {{{\left( {2 – \sqrt 3 } \right)}^2}} – \sqrt {4 – 2\sqrt 3 } \\
= 2 – \sqrt 3 – \sqrt {3 – 2\sqrt 3 .1 + 1} \\
= 2 – \sqrt 3 – \sqrt {{{\left( {\sqrt 3 – 1} \right)}^2}} \\
= 2 – \sqrt 3 – \sqrt 3 + 1\\
= 3 – 2\sqrt 3 \\
c.C = \sqrt {15 – 6\sqrt 6 } + \sqrt {33 – 12\sqrt 6 } \\
= \sqrt {9 – 2.3.\sqrt 6 + 6} + \sqrt {24 – 2.2\sqrt 6 + 9} \\
= \sqrt {{{\left( {3 – \sqrt 6 } \right)}^2}} + \sqrt {{{\left( {2\sqrt 6 – 3} \right)}^2}} \\
= 3 – \sqrt 6 + 2\sqrt 6 – 3 = \sqrt 6 \\
d.D = \sqrt {2 – \sqrt 3 } – \sqrt {2 + \sqrt 3 } \\
= \dfrac{{\sqrt {4 – 2\sqrt 3 } – \sqrt {4 + 2\sqrt 3 } }}{{\sqrt 2 }}\\
= \dfrac{{\sqrt {3 – 2\sqrt 3 .1 + 1} – \sqrt {3 + 2\sqrt 3 .1 + 1} }}{{\sqrt 2 }}\\
= \dfrac{{\sqrt {{{\left( {\sqrt 3 – 1} \right)}^2}} – \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} }}{{\sqrt 2 }}\\
= \dfrac{{\sqrt 3 – 1 – \sqrt 3 – 1}}{{\sqrt 2 }}\\
= \dfrac{{ – 2}}{{\sqrt 2 }} = – \sqrt 2
\end{array}\)
Đáp án:
Giải thích các bước giải: