rút gọn B B= (1/x-√x + 1/√x-1) : √x +1/(√x-1)^2 02/10/2021 Bởi Claire rút gọn B B= (1/x-√x + 1/√x-1) : √x +1/(√x-1)^2
$$\eqalign{ & B = \left( {{1 \over {x – \sqrt x }} + {1 \over {\sqrt x – 1}}} \right):{{\sqrt x + 1} \over {{{\left( {\sqrt x – 1} \right)}^2}}}\,\,\left( {x \ge 0;\,\,x \ne 1} \right) \cr & B = \left( {{1 \over {\sqrt x \left( {\sqrt x – 1} \right)}} + {1 \over {\sqrt x – 1}}} \right):{{\sqrt x + 1} \over {{{\left( {\sqrt x – 1} \right)}^2}}} \cr & B = {{1 + \sqrt x } \over {\sqrt x \left( {\sqrt x – 1} \right)}}.{{{{\left( {\sqrt x – 1} \right)}^2}} \over {\sqrt x + 1}} \cr & B = {{\sqrt x – 1} \over {\sqrt x }} \cr} $$ Bình luận
$$\eqalign{
& B = \left( {{1 \over {x – \sqrt x }} + {1 \over {\sqrt x – 1}}} \right):{{\sqrt x + 1} \over {{{\left( {\sqrt x – 1} \right)}^2}}}\,\,\left( {x \ge 0;\,\,x \ne 1} \right) \cr
& B = \left( {{1 \over {\sqrt x \left( {\sqrt x – 1} \right)}} + {1 \over {\sqrt x – 1}}} \right):{{\sqrt x + 1} \over {{{\left( {\sqrt x – 1} \right)}^2}}} \cr
& B = {{1 + \sqrt x } \over {\sqrt x \left( {\sqrt x – 1} \right)}}.{{{{\left( {\sqrt x – 1} \right)}^2}} \over {\sqrt x + 1}} \cr
& B = {{\sqrt x – 1} \over {\sqrt x }} \cr} $$