Rút gọn biểu thức: 3(sin^6x+cos^6x)- 2(sin^4x+cos^4x)

Rút gọn biểu thức:
3(sin^6x+cos^6x)- 2(sin^4x+cos^4x)

0 bình luận về “Rút gọn biểu thức: 3(sin^6x+cos^6x)- 2(sin^4x+cos^4x)”

  1. Nếu đề như trên thì:

    $\begin{array}{l} 3\left( {{{\sin }^6}x + {{\cos }^6}x} \right) – 2\left( {{{\sin }^4}x + {{\cos }^4}x} \right)\\ = 3\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\left( {{{\sin }^4}x – {{\sin }^2}x.{{\cos }^2}x + {{\cos }^4}x} \right) – 2\left( {{{\sin }^4}x + {{\cos }^4}x} \right)\\ = 3\left( {{{\sin }^4}x – {{\sin }^2}x{{\cos }^2}x + {{\cos }^4}x} \right) – 2\left( {{{\sin }^4}x + {{\cos }^4}x} \right)\\ = {\sin ^4}x + {\cos ^4}x – 3{\sin ^2}x{\cos ^2}x\\ = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} – 5{\sin ^2}x{\cos ^2}x\\ = 1 – 5{\sin ^2}x{\cos ^2}x \end{array}$

    Sửa đề: $3\left( {{{\sin }^4}x + {{\cos }^4}x} \right) – 2\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$

    $\begin{array}{l} 3\left( {{{\sin }^4}x + {{\cos }^4}x} \right) – 2\left( {{{\sin }^6}x + {{\cos }^6}x} \right)\\  = 3\left[ {{{\left( {{{\sin }^2}x + {{\cos }^2}x} \right)}^2} – 2{{\sin }^2}x.{{\cos }^2}x} \right] – 2\left[ {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\left( {{{\sin }^4}x – {{\sin }^2}x{{\cos }^2}x + {{\cos }^4}x} \right)} \right]\\  = 3\left( {1 – 2{{\sin }^2}x.{{\cos }^2}x} \right) – 2\left( {{{\sin }^4}x – {{\sin }^2}x{{\cos }^2}x + {{\cos }^4}x} \right)\\  = 3\left( {1 – 2{{\sin }^2}x{{\cos }^2}x} \right) – 2\left( {1 – 3{{\sin }^2}x{{\cos }^2}x} \right)\\  = 1 \end{array}$  

    Bình luận
  2. $3(\sin^6x+\cos^6x)-2(\sin^4x+\cos^4x)$

    $=3(\sin^2x+\cos^2x)(\sin^4x+\cos^4x-\sin^2x\cos^2x)-2(\sin^4x+\cos^4x)$

    $=3\sin^4x+3\cos^4x-3\sin^2x\cos^2x-2\sin^4x-2\cos^4x$

    $=\sin^4x+\cos^4x-3\sin^2x\cos^2x$

    $=(\sin^2x+\cos^2x)^2-2\sin^2x\cos^2x-3\sin^2x\cos^2x$

    $=1-5.(\sin x\cos x)^2$

    $=1-\dfrac{5}{4}.\sin^22x$

    $=1-\dfrac{5}{4}\Big(\dfrac{1}{2}-\dfrac{1}{2}\cos4x\Big)$

    $=\dfrac{5}{8}\cos4x+\dfrac{3}{8}$

    Bình luận

Viết một bình luận