Rút gọn biểu thức: A=(1/√a-1 + 1/√a+1)÷(1/√a-1 – 1/√a+1) với a>=0, a#0 Help 11/08/2021 Bởi Melody Rút gọn biểu thức: A=(1/√a-1 + 1/√a+1)÷(1/√a-1 – 1/√a+1) với a>=0, a#0 Help
Đáp án: $\begin{array}{l}A = \left( {\frac{1}{{\sqrt a – 1}} + \frac{1}{{\sqrt a + 1}}} \right):\left( {\frac{1}{{\sqrt a – 1}} – \frac{1}{{\sqrt a + 1}}} \right)\left( {a \ge 0;a \ne 1} \right)\\ = \frac{{\sqrt a + 1 + \sqrt a – 1}}{{\left( {\sqrt a – 1} \right)\left( {\sqrt a + 1} \right)}}:\frac{{\sqrt a + 1 – \left( {\sqrt a – 1} \right)}}{{\left( {\sqrt a – 1} \right)\left( {\sqrt a + 1} \right)}}\\ = \frac{{2\sqrt a }}{{\left( {\sqrt a – 1} \right)\left( {\sqrt a + 1} \right)}}.\frac{{\left( {\sqrt a – 1} \right)\left( {\sqrt a + 1} \right)}}{2}\\ = \sqrt a \end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
A = \left( {\frac{1}{{\sqrt a – 1}} + \frac{1}{{\sqrt a + 1}}} \right):\left( {\frac{1}{{\sqrt a – 1}} – \frac{1}{{\sqrt a + 1}}} \right)\left( {a \ge 0;a \ne 1} \right)\\
= \frac{{\sqrt a + 1 + \sqrt a – 1}}{{\left( {\sqrt a – 1} \right)\left( {\sqrt a + 1} \right)}}:\frac{{\sqrt a + 1 – \left( {\sqrt a – 1} \right)}}{{\left( {\sqrt a – 1} \right)\left( {\sqrt a + 1} \right)}}\\
= \frac{{2\sqrt a }}{{\left( {\sqrt a – 1} \right)\left( {\sqrt a + 1} \right)}}.\frac{{\left( {\sqrt a – 1} \right)\left( {\sqrt a + 1} \right)}}{2}\\
= \sqrt a
\end{array}$