Rút gọn $\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]\div \dfrac{x^2+x}{x^3+x}$

Rút gọn $\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]\div \dfrac{x^2+x}{x^3+x}$

0 bình luận về “Rút gọn $\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]\div \dfrac{x^2+x}{x^3+x}$”

  1. Đáp án:

    `(x^2+1)/(x+1)` 

    Giải thích các bước giải:

    `( (x-1)^2/(3x+(x-1)^2) – (1-2x^2+4x)/(x^3-1) + 1/(x-1) ) : (x^2+x)/(x^3+x)`

     `=( (x-1)^2/(x^2+x+1) – (1-2x^2+4x)/(x^3-1) + 1/(x-1) ) : (x(x+1))/(x(x^2+1))`

    `= ((x-1)(x-1)^2-(1-2x^2+4x)+x^2+x+1)/(x^3-1) : (x+1)/(x^2+1)`

    `= (x^3-1)/(x^3-1) : (x+1)/(x^2+1) = 1 : (x+1)/(x^2+1)`

    `= 1 . (x^2+1)/(x+1) = (x^2+1)/(x+1)`

    Bình luận
  2. `[(x-1)^2/(3x+(x-1)^2)-(1-2x^2+4x)/(x^3-1)+1/(x-1)]:(x^2+x)/(x^3+x)`

    `=[(x-1)^2/(x^2+x+1)-(1-2x^2+4x)/(x^3-1)+1/(x-1)]:(x+1)/(x^2+1)`

    `=[(x-1)^2/(x^2+x+1)-(1-2x^2+4x)/(x^3-1)+1/(x-1)]:(x+1)/(x^2+1)`

    `=[((x-1)^3-(1-2x^2+4x)+(x^2+x+1))/(x^3-1)]:(x+1)/(x^2+1)`

    `=[(x^3-1)/(x^3-1)].(x^2+1)/(x+1)`

    `=(x^2+1)/(x+1)`

    Bình luận

Viết một bình luận