rút gọn P=4/căn x-1 +3/căn x-1 -6 căn x+2 (x>0,x khác 1) R=(1/ căn x-1 -căn x/x-1):1/căn x+1 (x>0 x khác 1) 17/09/2021 Bởi Ayla rút gọn P=4/căn x-1 +3/căn x-1 -6 căn x+2 (x>0,x khác 1) R=(1/ căn x-1 -căn x/x-1):1/căn x+1 (x>0 x khác 1)
$P=\dfrac{4}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}-1}-\dfrac{6}{\sqrt{x}+2}$ ĐK: $x>0;x\neq1$ $P=\dfrac{7}{\sqrt{x}-1}-\dfrac{6}{\sqrt{x}+2}$ $P=\dfrac{7(\sqrt{x}+2)-6(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+2)}$ $P=\dfrac{7\sqrt{x}+14-6\sqrt{x}+6}{(\sqrt{x}-1)(\sqrt{x}+2)}$ $P=\dfrac{\sqrt{x}+20}{(\sqrt{x}-1)(\sqrt{x}+2)}$ Vậy $P=\dfrac{\sqrt{x}+20}{(\sqrt{x}-1)(\sqrt{x}+2)}$ $R=(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-1}):\dfrac{1}{\sqrt{x}+1}$ ĐK: $x>0;x\neq1$ $R=(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}).(\sqrt{x}+1)$ $R=\dfrac{\sqrt{x}+1-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}.(\sqrt{x}+1)$ $R=\dfrac{1}{\sqrt{x}-1}$ Vậy $R=\dfrac{1}{\sqrt{x}-1}$ với $x>0;x\neq1$ Bình luận
P= 4/√x-1 + 3/√x-1 – 6/√x+2 =4.(√x+2)/(√x-1).(√x+2) + 3.(√x+2)/(√x-1).(√x+2) – 6.(√x-1)/(√x-1).(√x+2) = 4√x +8 + 3√x +6 – 6√x + 6 / (√x-1).(√x+2) = √x + 20 / (√x-1).(√x+2) R=( 1/√x-1 – √x / x-1 ) : 1/√x +1 = ( √x +1/ (√x-1).(√x+1) – √x / (√x+1).(√x-1) ) : 1 /√x+1 = (√x +1-√x / (√x-1).(√x+1) ) : 1/√x +1 = 1/(√x-1).(√x+1) . (√x+1) /1 =1/√x -1 Bình luận
$P=\dfrac{4}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}-1}-\dfrac{6}{\sqrt{x}+2}$ ĐK: $x>0;x\neq1$
$P=\dfrac{7}{\sqrt{x}-1}-\dfrac{6}{\sqrt{x}+2}$
$P=\dfrac{7(\sqrt{x}+2)-6(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+2)}$
$P=\dfrac{7\sqrt{x}+14-6\sqrt{x}+6}{(\sqrt{x}-1)(\sqrt{x}+2)}$
$P=\dfrac{\sqrt{x}+20}{(\sqrt{x}-1)(\sqrt{x}+2)}$
Vậy $P=\dfrac{\sqrt{x}+20}{(\sqrt{x}-1)(\sqrt{x}+2)}$
$R=(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-1}):\dfrac{1}{\sqrt{x}+1}$ ĐK: $x>0;x\neq1$
$R=(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}).(\sqrt{x}+1)$
$R=\dfrac{\sqrt{x}+1-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}.(\sqrt{x}+1)$
$R=\dfrac{1}{\sqrt{x}-1}$
Vậy $R=\dfrac{1}{\sqrt{x}-1}$ với $x>0;x\neq1$
P= 4/√x-1 + 3/√x-1 – 6/√x+2
=4.(√x+2)/(√x-1).(√x+2) + 3.(√x+2)/(√x-1).(√x+2) – 6.(√x-1)/(√x-1).(√x+2)
= 4√x +8 + 3√x +6 – 6√x + 6 / (√x-1).(√x+2)
= √x + 20 / (√x-1).(√x+2)
R=( 1/√x-1 – √x / x-1 ) : 1/√x +1
= ( √x +1/ (√x-1).(√x+1) – √x / (√x+1).(√x-1) ) : 1 /√x+1
= (√x +1-√x / (√x-1).(√x+1) ) : 1/√x +1
= 1/(√x-1).(√x+1) . (√x+1) /1
=1/√x -1