Rút gọn: P = ($\sqrt{x}$ – $\frac{1}{ \sqrt{x}}$ )($\frac{\sqrt{x}}{\sqrt{x} + 1}$ + $\frac{\sqrt{x}}{\sqrt{x} – 1}$) 02/12/2021 Bởi Remi Rút gọn: P = ($\sqrt{x}$ – $\frac{1}{ \sqrt{x}}$ )($\frac{\sqrt{x}}{\sqrt{x} + 1}$ + $\frac{\sqrt{x}}{\sqrt{x} – 1}$)
`P = (\sqrt{x} – 1/\sqrt{x})(\sqrt{x}/(\sqrt{x}+1)+\sqrt{x}/(\sqrt{x}-1))` `=((\sqrt{x}\sqrt{x})/(\sqrt{x}) – 1/\sqrt{x})[(\sqrt{x}(\sqrt{x}-1))/((\sqrt{x}+1)(\sqrt{x}-1)) + (\sqrt{x}(\sqrt{x}+1))/((\sqrt{x}-1)(\sqrt{x}+1))]` `=(x-1)/\sqrt{x} * (\sqrt{x}(\sqrt{x}-1) + \sqrt{x}(\sqrt{x}+1))/((\sqrt{x}+1)(\sqrt{x}-1))` `=(x-1)/\sqrt{x} * (x – \sqrt{x} + x + \sqrt{x})/(x – 1)` `=(2\sqrt{x})/(\sqrt{x})` `=2` Vậy `P = 2` Bình luận
Đáp án:
Giải thích các bước giải:
`P = (\sqrt{x} – 1/\sqrt{x})(\sqrt{x}/(\sqrt{x}+1)+\sqrt{x}/(\sqrt{x}-1))`
`=((\sqrt{x}\sqrt{x})/(\sqrt{x}) – 1/\sqrt{x})[(\sqrt{x}(\sqrt{x}-1))/((\sqrt{x}+1)(\sqrt{x}-1)) + (\sqrt{x}(\sqrt{x}+1))/((\sqrt{x}-1)(\sqrt{x}+1))]`
`=(x-1)/\sqrt{x} * (\sqrt{x}(\sqrt{x}-1) + \sqrt{x}(\sqrt{x}+1))/((\sqrt{x}+1)(\sqrt{x}-1))`
`=(x-1)/\sqrt{x} * (x – \sqrt{x} + x + \sqrt{x})/(x – 1)`
`=(2\sqrt{x})/(\sqrt{x})`
`=2`
Vậy `P = 2`