Rút gọn rồi cộng các phân thức : x^2+4x+4 phần 2x+4- 4x^2-8x+4phần x^2-1 19/08/2021 Bởi Elliana Rút gọn rồi cộng các phân thức : x^2+4x+4 phần 2x+4- 4x^2-8x+4phần x^2-1
Đáp án: $\begin{array}{l}\left( {đkxđ:\left\{ \begin{array}{l}2x + 4 \ne 0\\{x^2} – 1 \ne 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \ne – 2\\x \ne \pm 1\end{array} \right.} \right)\\\frac{{{x^2} + 4x + 4}}{{2x + 4}} – \frac{{4{x^2} – 8x + 4}}{{{x^2} – 1}}\\ = \frac{{{{\left( {x + 2} \right)}^2}}}{{2\left( {x + 2} \right)}} – \frac{{4\left( {{x^2} – 2x + 1} \right)}}{{\left( {x – 1} \right)\left( {x + 1} \right)}}\\ = \frac{{x + 2}}{2} – \frac{{4{{\left( {x – 1} \right)}^2}}}{{\left( {x – 1} \right)\left( {x + 1} \right)}}\\ = \frac{{x + 2}}{2} – \frac{{4\left( {x – 1} \right)}}{{x + 1}}\\ = \frac{{\left( {x + 2} \right)\left( {x + 1} \right) – 4.\left( {x – 1} \right).2}}{{2\left( {x + 1} \right)}}\\ = \frac{{{x^2} + 3x + 2 – 8x + 8}}{{2\left( {x + 1} \right)}}\\ = \frac{{{x^2} – 5x + 10}}{{2\left( {x + 1} \right)}}\end{array}$ Bình luận
Đáp án: Điều kiện xác định: x$\neq$±1 $\frac{x^2+4x+4}{2x+4}$ – $\frac{4x^2-8x+4}{x^2-1}$ = $\frac{(x+2)^2}{2(x+2)}$ – $\frac{4(x^2-2x+1)}{(x-1)(x+1)}$ = $\frac{x+2}{2}$ – $\frac{4(x-1)^2}{(x-1)(x+1)}$ = $\frac{x+2}{2}$ – $\frac{4(x-1)}{x+1}$ = $\frac{(x+2)(x+1)}{2(x+1)}$ – $\frac{4.2(x-1)}{2(x+1)}$ = $\frac{x^2+x+2x+2}{2(x+1)}$ – $\frac{8x-8}{2(x+1)}$ = $\frac{x^2+x+2x+2-8x+8}{2(x+1)}$ = $\frac{x^2-5x+10}{2(x+1)}$ Bình luận
Đáp án:
$\begin{array}{l}
\left( {đkxđ:\left\{ \begin{array}{l}
2x + 4 \ne 0\\
{x^2} – 1 \ne 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x \ne – 2\\
x \ne \pm 1
\end{array} \right.} \right)\\
\frac{{{x^2} + 4x + 4}}{{2x + 4}} – \frac{{4{x^2} – 8x + 4}}{{{x^2} – 1}}\\
= \frac{{{{\left( {x + 2} \right)}^2}}}{{2\left( {x + 2} \right)}} – \frac{{4\left( {{x^2} – 2x + 1} \right)}}{{\left( {x – 1} \right)\left( {x + 1} \right)}}\\
= \frac{{x + 2}}{2} – \frac{{4{{\left( {x – 1} \right)}^2}}}{{\left( {x – 1} \right)\left( {x + 1} \right)}}\\
= \frac{{x + 2}}{2} – \frac{{4\left( {x – 1} \right)}}{{x + 1}}\\
= \frac{{\left( {x + 2} \right)\left( {x + 1} \right) – 4.\left( {x – 1} \right).2}}{{2\left( {x + 1} \right)}}\\
= \frac{{{x^2} + 3x + 2 – 8x + 8}}{{2\left( {x + 1} \right)}}\\
= \frac{{{x^2} – 5x + 10}}{{2\left( {x + 1} \right)}}
\end{array}$
Đáp án:
Điều kiện xác định: x$\neq$±1
$\frac{x^2+4x+4}{2x+4}$ – $\frac{4x^2-8x+4}{x^2-1}$ = $\frac{(x+2)^2}{2(x+2)}$ – $\frac{4(x^2-2x+1)}{(x-1)(x+1)}$ = $\frac{x+2}{2}$ – $\frac{4(x-1)^2}{(x-1)(x+1)}$ = $\frac{x+2}{2}$ – $\frac{4(x-1)}{x+1}$ = $\frac{(x+2)(x+1)}{2(x+1)}$ – $\frac{4.2(x-1)}{2(x+1)}$ = $\frac{x^2+x+2x+2}{2(x+1)}$ – $\frac{8x-8}{2(x+1)}$ = $\frac{x^2+x+2x+2-8x+8}{2(x+1)}$ = $\frac{x^2-5x+10}{2(x+1)}$