S=1/2^2 – 1/2^4 +1/2^6 -..+ 1/2^4n-2 – 1/2^4n +…+ 1/2^2002 – 1/2^2004 CMR S<0,2 29/09/2021 Bởi Iris S=1/2^2 – 1/2^4 +1/2^6 -..+ 1/2^4n-2 – 1/2^4n +…+ 1/2^2002 – 1/2^2004 CMR S<0,2
Đáp án + giải thích bước giải : `S = 1/2^2 – 1/2^4 + 1/2^6 – … + 1/2^{4n – 2} – 1/2^{4n} + … + 1/2^{2002} – 1/2^{2004}` `-> 2^2S = 1 -1/2^2 + 1/2^4 + … + 1/2^{4n -4} – 1/2^{4n -2} + … + 2/2^{2000} – 1/2^{2002}` `-> 4S + S = (1 -1/2^2 + 1/2^4 + … + 1/2^{4n -4} – 1/2^{4n -2} + … + 2/2^{2000} – 1/2^{2002}) + (1/2^2 – 1/2^4 + 1/2^6 – … + 1/2^{4n – 2} – 1/2^{4n} + … + 1/2^{2002} – 1/2^{2004})` `-> 5S = 1 – 1/2^{2004}` Ta thấy : `1 – 1/2^{2004} < 1` `-> 5S = 1 – 1/2^{2004} < 1` `-> S = 1 – 1/2^{2004} < 1/5` `-> S = 1 – 1/2^{2004} < 0,2` hay `S < 0,2 (đpcm)` Bình luận
Giải thích các bước giải: Ta có: $S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-…+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+…+\dfrac{2}{2^{2002}}-\dfrac{1}{2^{2004}}$ $\to 2^2S=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-…+\dfrac{1}{2^{4n-4}}-\dfrac{1}{2^{4n-2}}+…+\dfrac{2}{2^{2000}}-\dfrac{1}{2^{2002}}$ $\to S+2^2S=1-\dfrac{1}{2^{2004}}$ $\to 5S=1-\dfrac{1}{2^{2004}}<1$ $\to S<\dfrac15$ $\to S<0.2$ Bình luận
Đáp án + giải thích bước giải :
`S = 1/2^2 – 1/2^4 + 1/2^6 – … + 1/2^{4n – 2} – 1/2^{4n} + … + 1/2^{2002} – 1/2^{2004}`
`-> 2^2S = 1 -1/2^2 + 1/2^4 + … + 1/2^{4n -4} – 1/2^{4n -2} + … + 2/2^{2000} – 1/2^{2002}`
`-> 4S + S = (1 -1/2^2 + 1/2^4 + … + 1/2^{4n -4} – 1/2^{4n -2} + … + 2/2^{2000} – 1/2^{2002}) + (1/2^2 – 1/2^4 + 1/2^6 – … + 1/2^{4n – 2} – 1/2^{4n} + … + 1/2^{2002} – 1/2^{2004})`
`-> 5S = 1 – 1/2^{2004}`
Ta thấy : `1 – 1/2^{2004} < 1`
`-> 5S = 1 – 1/2^{2004} < 1`
`-> S = 1 – 1/2^{2004} < 1/5`
`-> S = 1 – 1/2^{2004} < 0,2`
hay `S < 0,2 (đpcm)`
Giải thích các bước giải:
Ta có:
$S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-…+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+…+\dfrac{2}{2^{2002}}-\dfrac{1}{2^{2004}}$
$\to 2^2S=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-…+\dfrac{1}{2^{4n-4}}-\dfrac{1}{2^{4n-2}}+…+\dfrac{2}{2^{2000}}-\dfrac{1}{2^{2002}}$
$\to S+2^2S=1-\dfrac{1}{2^{2004}}$
$\to 5S=1-\dfrac{1}{2^{2004}}<1$
$\to S<\dfrac15$
$\to S<0.2$