S=1 + 2 mũ 1 + 2 mũ 3 + 2 mũ 5 + 27 + chấm chấm chấm + 2 mũ 99 + 2 mũ 101 02/11/2021 Bởi Madeline S=1 + 2 mũ 1 + 2 mũ 3 + 2 mũ 5 + 27 + chấm chấm chấm + 2 mũ 99 + 2 mũ 101
$S=1+2^1+2^3+2^5+2^7…+2^{99}+2^{101}$ $⇒2^2S=2^2+2^3+2^5+2^7+2^9+…+2^{101}+2^{103}$ $⇒2^2S-S=(2^2-2^1-1)+(2^3-2^3)+…+2^{103}$ $⇒3S=1+2^{103}$ $⇒S=$$\frac{1+2^{103}}{3}$ Bình luận
Bạn tham khảo : $S = 1 + 2^1 + 2^3 + 2^5 + 2^7 +… + 2^{99} + 2^{101}$ $4S = 2^2 + 2^3 + 2^7 + … + 2^{101} + 2^{103}$ $4S -S = ( 2^2 + 2^3 + 2^7 + … + 2^{101} + 2^{103}) – (1 + 2^1 + 2^3 + 2^5 + 2^7 +… + 2^{99} + 2^{101})$ $3S = 2^{101} – 2^2 – 2^5$ $S = \dfrac{2^{101} – 2^2 – 2^5}{3}$ Bình luận
$S=1+2^1+2^3+2^5+2^7…+2^{99}+2^{101}$
$⇒2^2S=2^2+2^3+2^5+2^7+2^9+…+2^{101}+2^{103}$
$⇒2^2S-S=(2^2-2^1-1)+(2^3-2^3)+…+2^{103}$
$⇒3S=1+2^{103}$
$⇒S=$$\frac{1+2^{103}}{3}$
Bạn tham khảo :
$S = 1 + 2^1 + 2^3 + 2^5 + 2^7 +… + 2^{99} + 2^{101}$
$4S = 2^2 + 2^3 + 2^7 + … + 2^{101} + 2^{103}$
$4S -S = ( 2^2 + 2^3 + 2^7 + … + 2^{101} + 2^{103}) – (1 + 2^1 + 2^3 + 2^5 + 2^7 +… + 2^{99} + 2^{101})$
$3S = 2^{101} – 2^2 – 2^5$
$S = \dfrac{2^{101} – 2^2 – 2^5}{3}$