$S=\frac{3}{1.4}+$ $\frac{3}{4.7}+$ $\frac{3}{7.10}+…+$ $\frac{3}{40.43}+$ $\frac{3}{43.46}$
Hãy chứng tỏ rằng S < 1
Rút gọn $B=(1-\frac{1}{2}).(1-$ $\frac{1}{3}).(1-$ $\frac{1}{4})...(1-$ $\frac{1}{20})$
$S=\frac{3}{1.4}+$ $\frac{3}{4.7}+$ $\frac{3}{7.10}+…+$ $\frac{3}{40.43}+$ $\frac{3}{43.46}$
Hãy chứng tỏ rằng S < 1
Rút gọn $B=(1-\frac{1}{2}).(1-$ $\frac{1}{3}).(1-$ $\frac{1}{4})...(1-$ $\frac{1}{20})$
Đáp án:
Giải thích các bước giải:
$S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+…+\dfrac{3}{43.46}$
$ $
$=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+…+\dfrac{1}{43}-\dfrac{1}{46}$
$ $
$=1-\dfrac{1}{46}$
$ $
$=\dfrac{45}{46}$
$ $
$ $
`B=(1-\frac{1}{2}).(1-\frac{1}{3}).(1-\frac{1}{4})…(1-\frac{1}{20})`
` `
`=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}…\frac{19}{20}`
` `
`=\frac{1.2.3…19}{2.3.4…20}`
` `
`=\frac{1}{20}`
`S = 3/1.4 + 3/4.7 + 3/7.10 +…+ 3/40.43 + 3/43.46`
`= 1 – 1/4 + 1/4 – 1/7 + 1/7 – 1/10 +…+ 1/40 – 1/43 + 1/43 – 1/46`
`= 1 – 1/46 < 1`
`B =(1 – 1/2).(1-1/3).(1-1/4)…(1-1/20)`
`= 1/2 . 2/3 . 3/4 … 19/20`
`= (1.2.3…19)/(2.3.4…20)`
`= 1/20`