sin^2(x-2pi/3) + sin^2x+sin^2(x+2pi/3)=3/2

sin^2(x-2pi/3) + sin^2x+sin^2(x+2pi/3)=3/2

0 bình luận về “sin^2(x-2pi/3) + sin^2x+sin^2(x+2pi/3)=3/2”

  1. Đáp án:

    \[\left[ \begin{array}{l}
    x = k\pi \\
    x =  \pm \dfrac{\pi }{3} + k\pi 
    \end{array} \right.\]

    Giải thích các bước giải:

     Ta có:

    \(\begin{array}{l}
    \cos 2x = 1 – 2{\sin ^2}x \Rightarrow {\sin ^2}x = \dfrac{{1 – \cos 2x}}{2}\\
    {\sin ^2}\left( {x – \dfrac{{2\pi }}{3}} \right) + {\sin ^2}x + {\sin ^2}\left( {x + \dfrac{{2\pi }}{3}} \right) = \dfrac{3}{2}\\
     \Leftrightarrow \dfrac{{1 – \cos \left( {2x – \dfrac{{4\pi }}{3}} \right)}}{2} + \dfrac{{1 – \cos 2x}}{2} + \dfrac{{1 – \cos \left( {2x + \dfrac{{4\pi }}{3}} \right)}}{2} = \dfrac{3}{2}\\
     \Leftrightarrow \dfrac{3}{2} – \dfrac{1}{2}\left( {\cos \left( {2x – \dfrac{{4\pi }}{3}} \right) + \cos 2x + \cos \left( {2x + \dfrac{{4\pi }}{3}} \right)} \right) = \dfrac{3}{2}\\
     \Leftrightarrow \cos \left( {2x – \dfrac{{4\pi }}{3}} \right) + \cos 2x + \cos \left( {2x + \dfrac{{4\pi }}{3}} \right) = 0\\
     \Leftrightarrow \left[ {\cos \left( {2x – \dfrac{{4\pi }}{3}} \right) + \cos \left( {2x + \dfrac{{4\pi }}{3}} \right)} \right] + \cos 2x = 0\\
     \Leftrightarrow 2.\cos \left( {2x – \dfrac{{4\pi }}{3} + 2x + \dfrac{{4\pi }}{3}} \right).\cos \left( {2x – \dfrac{{4\pi }}{3} – 2x – \dfrac{{4\pi }}{3}} \right) + \cos 2x = 0\\
     \Leftrightarrow 2.\cos 4x.\cos \left( { – \dfrac{{8\pi }}{3}} \right) + \cos 2x = 0\\
     \Leftrightarrow 2.\cos 4x.\left( { – \dfrac{1}{2}} \right) + \cos 2x = 0\\
     \Leftrightarrow \cos 4x – \cos 2x = 0\\
     \Leftrightarrow \left( {2{{\cos }^2}2x – 1} \right) – \cos 2x = 0\\
     \Leftrightarrow \left( {\cos 2x – 1} \right)\left( {2\cos 2x + 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \cos 2x = 1\\
    \cos 2x =  – \dfrac{1}{2}
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    2x = k2\pi \\
    2x =  \pm \dfrac{{2\pi }}{3} + k2\pi 
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x = k\pi \\
    x =  \pm \dfrac{\pi }{3} + k\pi 
    \end{array} \right.
    \end{array}\)

    Bình luận

Viết một bình luận