Sinx +√3 cosx=2 Cos 7x-√3sin7x=-√2 2cos 3x+√3 sinx+cosx=0

Sinx +√3 cosx=2
Cos 7x-√3sin7x=-√2
2cos 3x+√3 sinx+cosx=0

0 bình luận về “Sinx +√3 cosx=2 Cos 7x-√3sin7x=-√2 2cos 3x+√3 sinx+cosx=0”

  1. Đáp án:

    \(\eqalign{
    & a)\,\,x = {\pi \over 6} + k2\pi \,\,\left( {k \in Z} \right) \cr
    & b)\,\,\left[ \matrix{
    x = {{5\pi } \over {84}} + {{k2\pi } \over 7} \hfill \cr
    x = – {{13\pi } \over {84}} + {{k2\pi } \over 7} \hfill \cr} \right.\,\,\left( {k \in Z} \right) \cr
    & c)\,\,\left[ \matrix{
    x = {\pi \over 3} + k\pi \hfill \cr
    x = {\pi \over 3} + {{k\pi } \over 2} \hfill \cr} \right.\,\,\left( {k \in Z} \right) \cr} \)

    Giải thích các bước giải:

    $$\eqalign{
    & a)\,\,\sin x + \sqrt 3 \cos x = 2 \cr
    & \Leftrightarrow {1 \over 2}\sin x + {{\sqrt 3 } \over 2}\cos x = 1 \cr
    & \Leftrightarrow \sin x\cos {\pi \over 3} + \cos x\sin {\pi \over 3} = 1 \cr
    & \Leftrightarrow \sin \left( {x + {\pi \over 3}} \right) = 1 \cr
    & \Leftrightarrow x + {\pi \over 3} = {\pi \over 2} + k2\pi \cr
    & \Leftrightarrow x = {\pi \over 6} + k2\pi \,\,\left( {k \in Z} \right) \cr
    & b)\,\,\cos 7x – \sqrt 3 \sin 7x = – \sqrt 2 \cr
    & \Leftrightarrow {1 \over 2}\cos 7x – {{\sqrt 3 } \over 2}\sin 7x = – {{\sqrt 2 } \over 2} \cr
    & \Leftrightarrow \cos 7x\cos {\pi \over 3} – \sin 7x\sin {\pi \over 3} = – {{\sqrt 2 } \over 2} \cr
    & \Leftrightarrow \cos \left( {7x + {\pi \over 3}} \right) = – {{\sqrt 2 } \over 2} \cr
    & \Leftrightarrow \left[ \matrix{
    7x + {\pi \over 3} = {{3\pi } \over 4} + k2\pi \hfill \cr
    7x + {\pi \over 3} = – {{3\pi } \over 4} + k2\pi \hfill \cr} \right. \cr
    & \Leftrightarrow \left[ \matrix{
    7x = {{5\pi } \over {12}} + k2\pi \hfill \cr
    7x = – {{13\pi } \over {12}} + k2\pi \hfill \cr} \right. \cr
    & \Leftrightarrow \left[ \matrix{
    x = {{5\pi } \over {84}} + {{k2\pi } \over 7} \hfill \cr
    x = – {{13\pi } \over {84}} + {{k2\pi } \over 7} \hfill \cr} \right.\,\,\left( {k \in Z} \right) \cr
    & c)\,\,2\cos 3x + \sqrt 3 \sin x + \cos x = 0 \cr
    & \Leftrightarrow {{\sqrt 3 } \over 2}\sin x + {1 \over 2}\cos x = – \cos 3x \cr
    & \Leftrightarrow \sin x\cos {\pi \over 6} + \cos x\sin {\pi \over 6} = – \cos 3x \cr
    & \Leftrightarrow \sin \left( {x + {\pi \over 6}} \right) = \sin \left( {3x – {\pi \over 2}} \right) \cr
    & \Leftrightarrow \left[ \matrix{
    x + {\pi \over 6} = 3x – {\pi \over 2} + k2\pi \hfill \cr
    x + {\pi \over 6} = \pi – 3x + {\pi \over 2} + k2\pi \hfill \cr} \right. \cr
    & \Leftrightarrow \left[ \matrix{
    2x = {{2\pi } \over 3} + k2\pi \hfill \cr
    4x = {{4\pi } \over 3} + k2\pi \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
    x = {\pi \over 3} + k\pi \hfill \cr
    x = {\pi \over 3} + {{k\pi } \over 2} \hfill \cr} \right.\,\,\left( {k \in Z} \right) \cr} $$

    Bình luận

Viết một bình luận