sin^4x+cos^4x = 2(sin^6x +cos^6x)+5/4(cos2x )

sin^4x+cos^4x = 2(sin^6x +cos^6x)+5/4(cos2x )

0 bình luận về “sin^4x+cos^4x = 2(sin^6x +cos^6x)+5/4(cos2x )”

  1. Đáp án:

     $x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}$

    Giải thích các bước giải:

    $sin^4x+cos^4x=2(sin^6x+cos^6x)+\dfrac{5}{4}cos2x$

    $\rightarrow (sin^2x+cos^2x)^2-2sin^2xcos^2x=2((sin^2x+cos^2x)^3-3sin^2xcos^2x(sin^2x+cos^2x))+\dfrac{5}{4}cos2x$

    $\rightarrow 1-2sin^2xcos^2x=2(1-3sin^2xcos^2x)+\dfrac{5}{4}cos2x$

    $\rightarrow 1-4sin^2xcos^2x+\dfrac{5}{4}cos2x=0$

    $\rightarrow 1-sin^22x+\dfrac{5}{4}cos2x=0$

    $\rightarrow cos^22x+\dfrac{5}{4}cos2x=0$

    $\rightarrow cos2x(cos2x+\dfrac{5}{4})=0$

    $\rightarrow cos2x=0$

    $\rightarrow 2x=\dfrac{\pi}{2}+k\pi$

    $\rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}$

    Bình luận

Viết một bình luận