Sinx+cosx.sin2x+(căn3)cos3x=2(cos4x+sin^3x) 30/09/2021 Bởi Valentina Sinx+cosx.sin2x+(căn3)cos3x=2(cos4x+sin^3x)
Đáp án: $x=\dfrac{\pi}{42}+k\dfrac{2\pi}{7}$ và $x=\dfrac{-\pi}{6}+k2\pi$ ($k\in\mathbb Z$) Giải thích các bước giải: $\Rightarrow \sin x+\cos x\sin 2x+\sqrt3\cos 3x=2(\cos4x+\sin 3x)$ $\Rightarrow \sin x+2{\cos}^2x\sin x-2{\sin}^3x+\sqrt3\cos 3x=2\cos 4x$ $\Rightarrow \sin x+2\sin x({\cos}^2x-{\sin}^2x)+\sqrt3\cos 3x=2\cos 4x$ $\Rightarrow \sin x+2\sin x\cos 2x+\sqrt3\cos 3x=2\cos 4x$ $\Rightarrow \sin x+2.\dfrac{1}{2}[\sin 3x+\sin(-x)]+\sqrt3\cos 3x=2\cos 4x$ $\Rightarrow \sin 3x+\sqrt3\cos 3x=2\cos 4x$ $\Rightarrow \dfrac{1}{2}\sin 3x+\dfrac{\sqrt3}{2}\cos 3x=\cos 4x$ $\Rightarrow \sin(3x+\dfrac{\pi}{3})=\sin(\dfrac{\pi}{2}-4x)$ $\Rightarrow 3x+\dfrac{\pi}{3}=\dfrac{\pi}{2}-4x+k2\pi$ hoặc $3x+\dfrac{\pi}{3}=\pi-(\dfrac{\pi}{2}-4x)+k2\pi$ Vậy $x=\dfrac{\pi}{42}+k\dfrac{2\pi}{7}$ và $x=\dfrac{-\pi}{6}+k2\pi$ ($k\in\mathbb Z$). Bình luận
sinx + cosx.sin2x + √3.cos3x = 2(cos4x + sin³x) <=> sinx + 2cos²x.sinx – 2sin³x + √3.cos3x = 2cos4x <=> sinx + 2sinx.(cos²x – sin²x) + √3.cos3x = 2cos4x <=> sinx + 2sinx.cos2x + √3.cos3x = 2cos4x <=> sinx + sin3x + sin(-x) + √3.cos3x = 2cos4x <=> (1/2).sin3x + (√3/2).cos3x = cos4x <=> sin(pi/6).sin3x + cos(pi/6).cos3x = cos4x <=> cos(3x-pi/6) = cos4x <=> [ 4x = 3x-pi/6 + 2kpi —— [ 4x = -3x+pi/6 + 2kpi <=> [ x = -pi/6 + 2kpi —— [ x = pi/42 + 2kpi/7 Bình luận
Đáp án: $x=\dfrac{\pi}{42}+k\dfrac{2\pi}{7}$ và $x=\dfrac{-\pi}{6}+k2\pi$ ($k\in\mathbb Z$)
Giải thích các bước giải:
$\Rightarrow \sin x+\cos x\sin 2x+\sqrt3\cos 3x=2(\cos4x+\sin 3x)$
$\Rightarrow \sin x+2{\cos}^2x\sin x-2{\sin}^3x+\sqrt3\cos 3x=2\cos 4x$
$\Rightarrow \sin x+2\sin x({\cos}^2x-{\sin}^2x)+\sqrt3\cos 3x=2\cos 4x$
$\Rightarrow \sin x+2\sin x\cos 2x+\sqrt3\cos 3x=2\cos 4x$
$\Rightarrow \sin x+2.\dfrac{1}{2}[\sin 3x+\sin(-x)]+\sqrt3\cos 3x=2\cos 4x$
$\Rightarrow \sin 3x+\sqrt3\cos 3x=2\cos 4x$
$\Rightarrow \dfrac{1}{2}\sin 3x+\dfrac{\sqrt3}{2}\cos 3x=\cos 4x$
$\Rightarrow \sin(3x+\dfrac{\pi}{3})=\sin(\dfrac{\pi}{2}-4x)$
$\Rightarrow 3x+\dfrac{\pi}{3}=\dfrac{\pi}{2}-4x+k2\pi$ hoặc $3x+\dfrac{\pi}{3}=\pi-(\dfrac{\pi}{2}-4x)+k2\pi$
Vậy $x=\dfrac{\pi}{42}+k\dfrac{2\pi}{7}$ và $x=\dfrac{-\pi}{6}+k2\pi$ ($k\in\mathbb Z$).
sinx + cosx.sin2x + √3.cos3x = 2(cos4x + sin³x)
<=> sinx + 2cos²x.sinx – 2sin³x + √3.cos3x = 2cos4x
<=> sinx + 2sinx.(cos²x – sin²x) + √3.cos3x = 2cos4x
<=> sinx + 2sinx.cos2x + √3.cos3x = 2cos4x
<=> sinx + sin3x + sin(-x) + √3.cos3x = 2cos4x
<=> (1/2).sin3x + (√3/2).cos3x = cos4x
<=> sin(pi/6).sin3x + cos(pi/6).cos3x = cos4x
<=> cos(3x-pi/6) = cos4x
<=> [ 4x = 3x-pi/6 + 2kpi
—— [ 4x = -3x+pi/6 + 2kpi
<=> [ x = -pi/6 + 2kpi
—— [ x = pi/42 + 2kpi/7