Sin2x + sin4x + sin6x = msin4x.cos(x+ pi ÷ n) .cos ( x – pi÷n ). Tính m + n 13/10/2021 Bởi Skylar Sin2x + sin4x + sin6x = msin4x.cos(x+ pi ÷ n) .cos ( x – pi÷n ). Tính m + n
Đáp án: \[m + n = 10\] Giải thích các bước giải: Ta có: \(\begin{array}{l}\sin 2x + \sin 4x + \sin 6x\\ = \left( {\sin 2x + \sin 6x} \right) + \sin 4x\\ = 2.\sin \dfrac{{2x + 6x}}{2}.\cos \dfrac{{2x – 6x}}{2} + \sin 4x\\ = 2.\sin 4x.\cos \left( { – 2x} \right) + \sin 4x\\ = 2\sin 4x.\cos 2x + \sin 4x\\ = 2\sin 4x.\left( {\cos 2x + \dfrac{1}{2}} \right)\\ = 2\sin 4x.\left( {\cos 2x + \cos \dfrac{\pi }{3}} \right)\\ = 2.sin4x.2.\cos \dfrac{{2x + \dfrac{\pi }{3}}}{2}.\cos \dfrac{{2x – \dfrac{\pi }{3}}}{2}\\ = 4\sin 4x.\cos \left( {x + \dfrac{\pi }{6}} \right).\cos \left( {x – \dfrac{\pi }{6}} \right)\\ \Rightarrow m = 4;\,\,\,n = 6\\ \Rightarrow m + n = 10\end{array}\) Vậy \(m + n = 10\) Bình luận
Đáp án:
\[m + n = 10\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\sin 2x + \sin 4x + \sin 6x\\
= \left( {\sin 2x + \sin 6x} \right) + \sin 4x\\
= 2.\sin \dfrac{{2x + 6x}}{2}.\cos \dfrac{{2x – 6x}}{2} + \sin 4x\\
= 2.\sin 4x.\cos \left( { – 2x} \right) + \sin 4x\\
= 2\sin 4x.\cos 2x + \sin 4x\\
= 2\sin 4x.\left( {\cos 2x + \dfrac{1}{2}} \right)\\
= 2\sin 4x.\left( {\cos 2x + \cos \dfrac{\pi }{3}} \right)\\
= 2.sin4x.2.\cos \dfrac{{2x + \dfrac{\pi }{3}}}{2}.\cos \dfrac{{2x – \dfrac{\pi }{3}}}{2}\\
= 4\sin 4x.\cos \left( {x + \dfrac{\pi }{6}} \right).\cos \left( {x – \dfrac{\pi }{6}} \right)\\
\Rightarrow m = 4;\,\,\,n = 6\\
\Rightarrow m + n = 10
\end{array}\)
Vậy \(m + n = 10\)