so sánh 1.1+1/ √2+1/ √3 +….+1/ √25 và 5 2.√2020 – √2019 và √2021 – √2020 11/10/2021 Bởi Josie so sánh 1.1+1/ √2+1/ √3 +….+1/ √25 và 5 2.√2020 – √2019 và √2021 – √2020
Đáp án: $\begin{array}{l}Do:1 > \dfrac{1}{{\sqrt {25} }}\\\dfrac{1}{{\sqrt 2 }} > \dfrac{1}{{\sqrt {25} }}\\\dfrac{1}{{\sqrt 3 }} > \dfrac{1}{{\sqrt {25} }}\\…\\ \Rightarrow 1 + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 3 }} + … + \dfrac{1}{{\sqrt {25} }}\\ > \dfrac{1}{{\sqrt {25} }} + \dfrac{1}{{\sqrt {25} }} + … + \dfrac{1}{{\sqrt {25} }}\\ \Rightarrow A > 25.\dfrac{1}{{\sqrt {25} }}\\ \Rightarrow A > 25.\dfrac{1}{5}\\ \Rightarrow A > 5\\Vậy\,1 + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 3 }} + … + \dfrac{1}{{\sqrt {25} }} > 5\\2)B = \sqrt {2020} – \sqrt {2019} \\C = \sqrt {2021} – \sqrt {2020} \\ \Rightarrow B.\left( {\sqrt {2020} + \sqrt {2019} } \right)\\ = \left( {\sqrt {2020} – \sqrt {2019} } \right).\left( {\sqrt {2020} + \sqrt {2019} } \right)\\ \Rightarrow B.\left( {\sqrt {2020} + \sqrt {2019} } \right) = 2020 – 2019\\ \Rightarrow B = \dfrac{1}{{\sqrt {2020} + \sqrt {2019} }}\\C.\left( {\sqrt {2021} + \sqrt {2020} } \right)\\ = \left( {\sqrt {2021} – \sqrt {2020} } \right).\left( {\sqrt {2021} + \sqrt {2020} } \right)\\ \Rightarrow C.\left( {\sqrt {2021} + \sqrt {2020} } \right) = 2021 – 2020 = 1\\ \Rightarrow C = \dfrac{1}{{\left( {\sqrt {2021} + \sqrt {2020} } \right)}}\\Do:\sqrt {2020} + \sqrt {2019} < \sqrt {2021} + \sqrt {2020} \\ \Rightarrow \dfrac{1}{{\sqrt {2020} + \sqrt {2019} }} > \dfrac{1}{{\sqrt {2021} + \sqrt {2020} }}\\ \Rightarrow B > C\\Vậy\,\sqrt {2020} – \sqrt {2019} > \sqrt {2021} – \sqrt {2020} \end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
Do:1 > \dfrac{1}{{\sqrt {25} }}\\
\dfrac{1}{{\sqrt 2 }} > \dfrac{1}{{\sqrt {25} }}\\
\dfrac{1}{{\sqrt 3 }} > \dfrac{1}{{\sqrt {25} }}\\
…\\
\Rightarrow 1 + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 3 }} + … + \dfrac{1}{{\sqrt {25} }}\\
> \dfrac{1}{{\sqrt {25} }} + \dfrac{1}{{\sqrt {25} }} + … + \dfrac{1}{{\sqrt {25} }}\\
\Rightarrow A > 25.\dfrac{1}{{\sqrt {25} }}\\
\Rightarrow A > 25.\dfrac{1}{5}\\
\Rightarrow A > 5\\
Vậy\,1 + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 3 }} + … + \dfrac{1}{{\sqrt {25} }} > 5\\
2)B = \sqrt {2020} – \sqrt {2019} \\
C = \sqrt {2021} – \sqrt {2020} \\
\Rightarrow B.\left( {\sqrt {2020} + \sqrt {2019} } \right)\\
= \left( {\sqrt {2020} – \sqrt {2019} } \right).\left( {\sqrt {2020} + \sqrt {2019} } \right)\\
\Rightarrow B.\left( {\sqrt {2020} + \sqrt {2019} } \right) = 2020 – 2019\\
\Rightarrow B = \dfrac{1}{{\sqrt {2020} + \sqrt {2019} }}\\
C.\left( {\sqrt {2021} + \sqrt {2020} } \right)\\
= \left( {\sqrt {2021} – \sqrt {2020} } \right).\left( {\sqrt {2021} + \sqrt {2020} } \right)\\
\Rightarrow C.\left( {\sqrt {2021} + \sqrt {2020} } \right) = 2021 – 2020 = 1\\
\Rightarrow C = \dfrac{1}{{\left( {\sqrt {2021} + \sqrt {2020} } \right)}}\\
Do:\sqrt {2020} + \sqrt {2019} < \sqrt {2021} + \sqrt {2020} \\
\Rightarrow \dfrac{1}{{\sqrt {2020} + \sqrt {2019} }} > \dfrac{1}{{\sqrt {2021} + \sqrt {2020} }}\\
\Rightarrow B > C\\
Vậy\,\sqrt {2020} – \sqrt {2019} > \sqrt {2021} – \sqrt {2020}
\end{array}$