so sánh A=(-2^1-2^2-2^3-2^4-…-2^100) và B=-2^100+1 05/12/2021 Bởi Valerie so sánh A=(-2^1-2^2-2^3-2^4-…-2^100) và B=-2^100+1
Đáp án: A<B. Giải thích các bước giải: $\begin{array}{l}A = \left( { – {2^1} – {2^2} – {2^3} – … – {2^{100}}} \right)\\ \Rightarrow 2A = – {2^2} – {2^3} – … – {2^{101}}\\ \Rightarrow 2A – A = – {2^{101}} – \left( { – {2^1}} \right)\\ \Rightarrow A = – {2^{101}} + 2 = 2.\left( { – {2^{100}} + 1} \right)\\Do: – {2^{100}} + 1 < 0\\ \Rightarrow – 2.\left( { – {2^{100}} + 1} \right) < – {2^{100}} + 1\\ \Rightarrow A < B\end{array}$ Vậy A<B. Bình luận
Bạn tham khảo : $A=(-2^1-2^2-2^3-2^4-…-2^{100})$ $2A = 2( -2^1-2^2-2^3-2^4-…-2^{100})$ $2A = -2^2 – 2^3-2^4-2^5 – ….. – 2^{101}$ $2A -A = (-2^2 – 2^3-2^4-2^5 – ….. – 2^{101}) – (-2^1-2^2-2^3-2^4-…-2^{100})$ $A = [ -2^2 – (-2^2)] – [ -2^3 – (-2^3)] – [ -2^4 – (-2^4)] – [ -2^5 – (-2^5)] – … – [ -2^{101} – (-2^1)]$ $A = [ -2^{101} – (-2^1)] = [ -2^{101} + 2)] = -2^{100} +2 + 2 = 2 ( -2^{100} + 1 ) = -2^{101} +1$ Vì $-2^{101} +1 < -2^{100} +1$ ⇒ $-2^1-2^2-2^3-2^4-…-2^{100}<-2^{101}+1$ ⇒ $A<B$ Bình luận
Đáp án: A<B.
Giải thích các bước giải:
$\begin{array}{l}
A = \left( { – {2^1} – {2^2} – {2^3} – … – {2^{100}}} \right)\\
\Rightarrow 2A = – {2^2} – {2^3} – … – {2^{101}}\\
\Rightarrow 2A – A = – {2^{101}} – \left( { – {2^1}} \right)\\
\Rightarrow A = – {2^{101}} + 2 = 2.\left( { – {2^{100}} + 1} \right)\\
Do: – {2^{100}} + 1 < 0\\
\Rightarrow – 2.\left( { – {2^{100}} + 1} \right) < – {2^{100}} + 1\\
\Rightarrow A < B
\end{array}$
Vậy A<B.
Bạn tham khảo :
$A=(-2^1-2^2-2^3-2^4-…-2^{100})$
$2A = 2( -2^1-2^2-2^3-2^4-…-2^{100})$
$2A = -2^2 – 2^3-2^4-2^5 – ….. – 2^{101}$
$2A -A = (-2^2 – 2^3-2^4-2^5 – ….. – 2^{101}) – (-2^1-2^2-2^3-2^4-…-2^{100})$
$A = [ -2^2 – (-2^2)] – [ -2^3 – (-2^3)] – [ -2^4 – (-2^4)] – [ -2^5 – (-2^5)] – … – [ -2^{101} – (-2^1)]$
$A = [ -2^{101} – (-2^1)] = [ -2^{101} + 2)] = -2^{100} +2 + 2 = 2 ( -2^{100} + 1 ) = -2^{101} +1$
Vì $-2^{101} +1 < -2^{100} +1$
⇒ $-2^1-2^2-2^3-2^4-…-2^{100}<-2^{101}+1$
⇒ $A<B$