So sánh: $A=\frac{2^{2010}+1}{2^{2007}+1}, B=\frac{2^{2012}+1}{2^{2009}+1}$

So sánh: $A=\frac{2^{2010}+1}{2^{2007}+1}, B=\frac{2^{2012}+1}{2^{2009}+1}$

0 bình luận về “So sánh: $A=\frac{2^{2010}+1}{2^{2007}+1}, B=\frac{2^{2012}+1}{2^{2009}+1}$”

  1. Đáp án:

    $A < B$

    Giải thích các bước giải:

    Ta có:

    $A = \dfrac{2^{2010} + 1}{2^{2007} + 1}$

    $= \dfrac{2^{2007}.8 + 1}{2^{2007} + 1}$

    $= \dfrac{8(2^{2007} + 1) – 7}{2^{2007} + 1}$

    $= 8 – \dfrac{7}{2^{2007} +1}$

    Tương tự:

    $B = 8 – \dfrac{7}{2^{2009} + 1}$

    Mặt khác:

    $2^{2007} + 1 < 2^{2009} + 1$

    $\Leftrightarrow \dfrac{7}{2^{2007} + 1} > \dfrac{7}{2^{2009} + 1}$

    $\Leftrightarrow – \dfrac{7}{2^{2007} + 1} < -\dfrac{7}{2^{2009} + 1}$

    $\Leftrightarrow 8 – \dfrac{7}{2^{2007} + 1} < 8 -\dfrac{7}{2^{2009} + 1}$

    Hay $A < B$

    Bình luận
  2. `A=(2^{2010}+1)/(2^{2007}+1)`

    `⇒A/8=(2^{2010}+1)/(2^{2010}+8)`

    `⇒A/8=((2^{2010}+8)-7)/(2^{2010}+8)`

    `⇒A/8=1-7/(2^{2010}+8)`

    `B=(2^{2012}+1)/(2^{2009}+1)`

    `⇒B/8=(2^{2012}+1)/(2^{2012}+8)`

    `⇒B/8=((2^{2012}+8)-7)/(2^{2012}+8)`

    `⇒B/8=1-7/(2^{2012}+8)`

    Vì `2^{2010}+8<2^{2012}+8`

    `⇒7/(2^{2010}+8)>7/(2^{2012}+8)`

    `⇒1-7/(2^{2010}+8)<1-7/(2^{2012}+8)`

    `⇒A/8<B/8⇒A<B`

    Vậy $A<B$.

     

    Bình luận

Viết một bình luận