So sánh A và B A= (1- 1/2)(1- 1/3)(1- 1/4) … (1- 1/20) B= (1- 1/4)(1- 1/9)(1- 1/16)…(1- 1/80)(1- 1/100) 05/07/2021 Bởi Clara So sánh A và B A= (1- 1/2)(1- 1/3)(1- 1/4) … (1- 1/20) B= (1- 1/4)(1- 1/9)(1- 1/16)…(1- 1/80)(1- 1/100)
Đáp án: `A<B` Giải thích các bước giải: Xét `A` `⇒A=(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})….(1-\frac{1}{19})(1-\frac{1}{20})` `⇒A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}…..\frac{18}{19}.\frac{19}{20}` `⇒A=\frac{1.(2.3……19)}{(2.3.4…..19).20}` `⇒A=\frac{1}{20}<\frac{1}{2}(1)` Xét `B` `⇒B=(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})…(1-\frac{1}{100^2})` `⇒B=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}….\frac{9999}{100^2}` `⇒B=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}….\frac{99.101}{100^2}` `⇒B=\frac{1.2.3…98.99}{2.3.4…99.100}.\frac{3.4.5…100.101}{2.3.4…100}` `⇒B=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}>\frac{1}{2}(2)` Từ `(1)(2)⇒A<B` Bình luận
Ta có: `A = (1 – 1/2) . (1 – 1/3) . (1 – 1/4) . … . (1 – 1/20)` `A = 1/2 . 2/3 . 3/4 . … . 19/20` `A = (1 . 2 . 3 . … . 19)/(2 . 3 . 4 . … . 20)` `A = 1/20` $\\$ `B = (1 – 1/4) . (1 – 1/9) . (1 – 1/16) . … . (1 – 1/80) . (1 – 1/100)` `B = 3/4 . 8/9 . 15/16 . … . 79/80 . 99/100` `B = (3 . 8 . 15 . … . 79 . 99)/(4 . 9 . 16 . … . 80 . 100)` `B = (1 . 3 . 2 . 4 . 3 . 5 . … . 9 . 11)/(2 . 2 . 3 . 3 . 4 . 3 . … . 10 . 10)` `B = ((1 . 2 . 3 . 4 . 5 . … . 9 . 10) . (3 . 4 . 5 . … . 11))/(2 . 3 . 4 . … . 10) . (2 . 3 . 4 . … . 10)` `B = 11/(10 . 2)` `B = 11/20` Mà `1/20 < 11/20` `=> A < B` Vậy `A < B` Bình luận
Đáp án:
`A<B`
Giải thích các bước giải:
Xét `A`
`⇒A=(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})….(1-\frac{1}{19})(1-\frac{1}{20})`
`⇒A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}…..\frac{18}{19}.\frac{19}{20}`
`⇒A=\frac{1.(2.3……19)}{(2.3.4…..19).20}`
`⇒A=\frac{1}{20}<\frac{1}{2}(1)`
Xét `B`
`⇒B=(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})…(1-\frac{1}{100^2})`
`⇒B=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}….\frac{9999}{100^2}`
`⇒B=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}….\frac{99.101}{100^2}`
`⇒B=\frac{1.2.3…98.99}{2.3.4…99.100}.\frac{3.4.5…100.101}{2.3.4…100}`
`⇒B=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}>\frac{1}{2}(2)`
Từ `(1)(2)⇒A<B`
Ta có:
`A = (1 – 1/2) . (1 – 1/3) . (1 – 1/4) . … . (1 – 1/20)`
`A = 1/2 . 2/3 . 3/4 . … . 19/20`
`A = (1 . 2 . 3 . … . 19)/(2 . 3 . 4 . … . 20)`
`A = 1/20`
$\\$
`B = (1 – 1/4) . (1 – 1/9) . (1 – 1/16) . … . (1 – 1/80) . (1 – 1/100)`
`B = 3/4 . 8/9 . 15/16 . … . 79/80 . 99/100`
`B = (3 . 8 . 15 . … . 79 . 99)/(4 . 9 . 16 . … . 80 . 100)`
`B = (1 . 3 . 2 . 4 . 3 . 5 . … . 9 . 11)/(2 . 2 . 3 . 3 . 4 . 3 . … . 10 . 10)`
`B = ((1 . 2 . 3 . 4 . 5 . … . 9 . 10) . (3 . 4 . 5 . … . 11))/(2 . 3 . 4 . … . 10) . (2 . 3 . 4 . … . 10)`
`B = 11/(10 . 2)`
`B = 11/20`
Mà `1/20 < 11/20`
`=> A < B`
Vậy `A < B`