So sánh: C= 1+2+2 ²+2 ³+…….+2^2019 và D= 2^2020

So sánh: C= 1+2+2 ²+2 ³+…….+2^2019 và D= 2^2020

0 bình luận về “So sánh: C= 1+2+2 ²+2 ³+…….+2^2019 và D= 2^2020”

  1. Đáp án:

     

    Giải thích các bước giải:

     2C=2+2^2+2^3+…+2^2020

    2C-C=(2+2^2+….+2^2020)

            -(1+2+2^2+…..+2^2020)

    C=2^2020-1

    Mà D=2^2020

    =>C<D

    Bình luận
  2. $C=1+2+2^2+…+2^{2019}$

    $⇒2C=2+2^2+2^3+…+2^{2020}$

    $⇒2C-C=(2+2^2+2^3+…+2^{2020})-(1+2+2^2+…+2^{2019})$

    $⇒C=2^{2020}-1<2^{2020}$

    Vậy $C<D$.

     

    Bình luận

Viết một bình luận