so sánh các biểu thức sau: A = 1/21 + 1/22 + 1/23 + … + 1/50 và B = 3/4 19/07/2021 Bởi Quinn so sánh các biểu thức sau: A = 1/21 + 1/22 + 1/23 + … + 1/50 và B = 3/4
-Lời giải: `A=1/21+1/22+1/23+…….+1/50` `=(1/21+1/22+……..+1/30)+(1/31+1/32+…….+1/40)+(1/41+1/42+……+1/50)` Vì `1/21>1/30` `1/22>1/30` `………………….` `1/30=1/30` `=>1/21+1/22+……..+1/30>underbrace{1/30+1/30+………+1/30}_{text{10 số}}` `<=>1/21+1/22+……..+1/30>10.1/30=1/3(1)` Vì `1/31>1/40` `1/32>1/40` `…………………` `1/40=1/40` `=>1/31+1/32+…….+1/40>underbrace{1/40+1/40+………+1/40}_{text{10 số}}` `=>1/31+1/32+…….+1/40>10.1/40=1/4(2)` Vì `1/41>1/50` `1/42>/50` `……………….` `1/50=1/50` `=>1/41+1/42+……+1/50>underbrace{1/50+1/50+………+1/50}_{text{10 số}}` `<=>1/41+1/42+……+1/50>10.1/50=1/5(3)` Cộng từng vế của `(1)(2)(3)` ta có: `(1/21+1/22+……..+1/30)+(1/31+1/32+…….+1/40)+(1/41+1/42+……+1/50)>1/3+1/4+1/5` `<=>(1/21+1/22+……..+1/30)+(1/31+1/32+…….+1/40)+(1/41+1/42+……+1/50)>47/60` Mà `47/60>45/60=3/4` `<=>(1/21+1/22+……..+1/30)+(1/31+1/32+…….+1/40)+(1/41+1/42+……+1/50)>3/4` Hay `A>B.` Vậy `A>B`. -Giải thích:Ta sử dụng tính chất `0<a<b=>1/a>1/b.` Bình luận
`A=1/21+1/22+1/23+…+1/50` `⇒A=(1/21+1/22+…+1/30)+(1/31+1/32+…+1/40)+(1/31+1/32+…+1/40)` `⇒A>(\underbrace{1/30+1/30+…+1/30}_{\text{10 số hạng}})+(\underbrace{1/40+1/40+…+1/40}_{\text{10 số hạng}})+(\underbrace{1/50+1/50+…+1/50}_{\text{10 số hạng}})` `⇒A>10. 1/30+10. 1/40+10. 1/50` `⇒A>10/30+10/40+10/50` `⇒A>1/3+1/4+1/5` `⇒A>{20+15+12}/60` `⇒A>47/60>45/60=3/4` `⇒A>B` Bình luận
-Lời giải:
`A=1/21+1/22+1/23+…….+1/50`
`=(1/21+1/22+……..+1/30)+(1/31+1/32+…….+1/40)+(1/41+1/42+……+1/50)`
Vì `1/21>1/30`
`1/22>1/30`
`………………….`
`1/30=1/30`
`=>1/21+1/22+……..+1/30>underbrace{1/30+1/30+………+1/30}_{text{10 số}}`
`<=>1/21+1/22+……..+1/30>10.1/30=1/3(1)`
Vì `1/31>1/40`
`1/32>1/40`
`…………………`
`1/40=1/40`
`=>1/31+1/32+…….+1/40>underbrace{1/40+1/40+………+1/40}_{text{10 số}}`
`=>1/31+1/32+…….+1/40>10.1/40=1/4(2)`
Vì `1/41>1/50`
`1/42>/50`
`……………….`
`1/50=1/50`
`=>1/41+1/42+……+1/50>underbrace{1/50+1/50+………+1/50}_{text{10 số}}`
`<=>1/41+1/42+……+1/50>10.1/50=1/5(3)`
Cộng từng vế của `(1)(2)(3)` ta có:
`(1/21+1/22+……..+1/30)+(1/31+1/32+…….+1/40)+(1/41+1/42+……+1/50)>1/3+1/4+1/5`
`<=>(1/21+1/22+……..+1/30)+(1/31+1/32+…….+1/40)+(1/41+1/42+……+1/50)>47/60`
Mà `47/60>45/60=3/4`
`<=>(1/21+1/22+……..+1/30)+(1/31+1/32+…….+1/40)+(1/41+1/42+……+1/50)>3/4`
Hay `A>B.`
Vậy `A>B`.
-Giải thích:Ta sử dụng tính chất `0<a<b=>1/a>1/b.`
`A=1/21+1/22+1/23+…+1/50`
`⇒A=(1/21+1/22+…+1/30)+(1/31+1/32+…+1/40)+(1/31+1/32+…+1/40)`
`⇒A>(\underbrace{1/30+1/30+…+1/30}_{\text{10 số hạng}})+(\underbrace{1/40+1/40+…+1/40}_{\text{10 số hạng}})+(\underbrace{1/50+1/50+…+1/50}_{\text{10 số hạng}})`
`⇒A>10. 1/30+10. 1/40+10. 1/50`
`⇒A>10/30+10/40+10/50`
`⇒A>1/3+1/4+1/5`
`⇒A>{20+15+12}/60`
`⇒A>47/60>45/60=3/4`
`⇒A>B`