So sánh : `M = {5^2018 + 1} / {5 ^ 2017 + 1}` ` N = {5^ 2017 + 1} / { 5^2016 +1 } ` 25/07/2021 Bởi Madeline So sánh : `M = {5^2018 + 1} / {5 ^ 2017 + 1}` ` N = {5^ 2017 + 1} / { 5^2016 +1 } `
Ta có : `M = ( 5^2018 + 1 )/( 5^2017 + 1 )` `1/5 . M = ( 5^2018 + 1 )/( 5 . ( 5^2017 + 1 ))` `1/5 . M = ( 5^2018 + 5 – 4 )/( 5^2018 + 5 )` `1/5 . M = 1 – 4/( 5^2018 + 5 )` Lại có : `N = ( 5^2017 + 1 )/( 5^2016 + 1 )` `1/5 . N = ( 5^2017 + 1 )/( 5 . ( 5^2016 + 1 ))` `1/5 . N = ( 5^2017 + 5 – 4 )/( 5^2017 + 5 )` `1/5 . N = 1 – 4/( 5^2017 + 5 )` Mà `4/( 5^2018 + 5 ) < 4/( 5^2017 + 5 ) ⇒ 1/5 . M > 1/5 . N ⇒ M > N` Vậy , `M > N` Bình luận
` M = (5^(2018)+1)/(5^(2017)+1)` `\to 1/5 M = ( 5^(2018) +1)/ (5^(2018) +5) = ( 5^(2018) + 5 – 4)/(5^(2018)+5) = 1 – 4/(5^(2018)+5)` ` N = (5^(2017)+1)/(5^(2016)+1)` ` \to 1/5 N = ( 5^(2017) +1)/ (5^(2017) +5) = ( 5^(2017) + 5 – 4)/(5^(2017)+5) = 1 – 4/(5^(2017)+5)` Ta có ` 5^(2018)+5 > 5^(2017) +5` `\to 4/(5^(2018)+5) < 4/(5^(2017)+5) \to 1 – 4/(5^(2018)+5) > 1 – 4/(5^(2017)+5)` `\to 1/5 M > 1/5 N` `\to M > N` Bình luận
Ta có : `M = ( 5^2018 + 1 )/( 5^2017 + 1 )`
`1/5 . M = ( 5^2018 + 1 )/( 5 . ( 5^2017 + 1 ))`
`1/5 . M = ( 5^2018 + 5 – 4 )/( 5^2018 + 5 )`
`1/5 . M = 1 – 4/( 5^2018 + 5 )`
Lại có : `N = ( 5^2017 + 1 )/( 5^2016 + 1 )`
`1/5 . N = ( 5^2017 + 1 )/( 5 . ( 5^2016 + 1 ))`
`1/5 . N = ( 5^2017 + 5 – 4 )/( 5^2017 + 5 )`
`1/5 . N = 1 – 4/( 5^2017 + 5 )`
Mà `4/( 5^2018 + 5 ) < 4/( 5^2017 + 5 ) ⇒ 1/5 . M > 1/5 . N ⇒ M > N`
Vậy , `M > N`
` M = (5^(2018)+1)/(5^(2017)+1)`
`\to 1/5 M = ( 5^(2018) +1)/ (5^(2018) +5) = ( 5^(2018) + 5 – 4)/(5^(2018)+5) = 1 – 4/(5^(2018)+5)`
` N = (5^(2017)+1)/(5^(2016)+1)`
` \to 1/5 N = ( 5^(2017) +1)/ (5^(2017) +5) = ( 5^(2017) + 5 – 4)/(5^(2017)+5) = 1 – 4/(5^(2017)+5)`
Ta có ` 5^(2018)+5 > 5^(2017) +5`
`\to 4/(5^(2018)+5) < 4/(5^(2017)+5) \to 1 – 4/(5^(2018)+5) > 1 – 4/(5^(2017)+5)`
`\to 1/5 M > 1/5 N`
`\to M > N`