( $\sqrt[]{x+1}$ – $\sqrt[]{x-2}$ )(1+ $\sqrt[]{x^2-x-2}$) = 3 09/08/2021 Bởi Arianna ( $\sqrt[]{x+1}$ – $\sqrt[]{x-2}$ )(1+ $\sqrt[]{x^2-x-2}$) = 3
Đáp án: x=3 Giải thích các bước giải: \(\begin{array}{l}DK:\,x \ge 2\\Dat\,\sqrt {x + 1} = a;\sqrt {x – 2} = b\,\,\left( {a,b \ge 0} \right)\\ \Rightarrow {a^2} – {b^2} = 3\\Ta\,co\,hpt\\\left\{ \begin{array}{l}\left( {a – b} \right)\left( {1 + ab} \right) = 3\\{a^2} – {b^2} = 3\end{array} \right.\\ \Rightarrow \left( {a – b} \right)\left( {a + b} \right) – \left( {a – b} \right)\left( {1 + ab} \right) = 0\\ \Leftrightarrow \left( {a – b} \right)\left( {a + b – ab – 1} \right) = 0\\ \Leftrightarrow \left( {a – b} \right)\left( {a – 1 – b\left( {a – 1} \right)} \right) = 0\\ \Leftrightarrow \left( {a – b} \right)\left( {a – 1} \right)\left( {b – 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}a = b\\a = 1\\b = 1\end{array} \right.\\TH1:\,a = b \Leftrightarrow \sqrt {x + 1} = \sqrt {x – 2} \left( {VN} \right)\\TH2:\,a = 1 \Rightarrow {b^2} = – 2\left( {VN} \right)\\TH3:\,b = 1 \Rightarrow a = 2\\Suy\,ra\,\left\{ \begin{array}{l}\sqrt {x + 1} = 2\\\sqrt {x – 2} = 1\end{array} \right. \Leftrightarrow x = 3\left( {tm} \right)\end{array}\) Bình luận
Đáp án:
x=3
Giải thích các bước giải:
\(\begin{array}{l}
DK:\,x \ge 2\\
Dat\,\sqrt {x + 1} = a;\sqrt {x – 2} = b\,\,\left( {a,b \ge 0} \right)\\
\Rightarrow {a^2} – {b^2} = 3\\
Ta\,co\,hpt\\
\left\{ \begin{array}{l}
\left( {a – b} \right)\left( {1 + ab} \right) = 3\\
{a^2} – {b^2} = 3
\end{array} \right.\\
\Rightarrow \left( {a – b} \right)\left( {a + b} \right) – \left( {a – b} \right)\left( {1 + ab} \right) = 0\\
\Leftrightarrow \left( {a – b} \right)\left( {a + b – ab – 1} \right) = 0\\
\Leftrightarrow \left( {a – b} \right)\left( {a – 1 – b\left( {a – 1} \right)} \right) = 0\\
\Leftrightarrow \left( {a – b} \right)\left( {a – 1} \right)\left( {b – 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
a = b\\
a = 1\\
b = 1
\end{array} \right.\\
TH1:\,a = b \Leftrightarrow \sqrt {x + 1} = \sqrt {x – 2} \left( {VN} \right)\\
TH2:\,a = 1 \Rightarrow {b^2} = – 2\left( {VN} \right)\\
TH3:\,b = 1 \Rightarrow a = 2\\
Suy\,ra\,\left\{ \begin{array}{l}
\sqrt {x + 1} = 2\\
\sqrt {x – 2} = 1
\end{array} \right. \Leftrightarrow x = 3\left( {tm} \right)
\end{array}\)