$(\sqrt6+\sqrt2)$.($\sqrt3-2$).$\sqrt{\sqrt3+2}$

$(\sqrt6+\sqrt2)$.($\sqrt3-2$).$\sqrt{\sqrt3+2}$

0 bình luận về “$(\sqrt6+\sqrt2)$.($\sqrt3-2$).$\sqrt{\sqrt3+2}$”

  1. $(\sqrt{6}+\sqrt{2})(\sqrt{3}-2).\sqrt{\sqrt{3}+2}$

    $=(3\sqrt{2}-2\sqrt{6}+\sqrt{6}-2\sqrt{2}).\sqrt{\sqrt{3}+2}$

    $=(\sqrt{2}-\sqrt{6}).\sqrt{\sqrt{3}+2}$

    $=\sqrt{2\sqrt{3}+4}-\sqrt{6\sqrt{3}+12}$

    $=\sqrt{(1+2\sqrt{3}+3)}-\sqrt{(9+6\sqrt{3}+3)}$

    $=\sqrt{(1+\sqrt{3}})^2-\sqrt{(3+\sqrt{3}})^2$

    $=1+\sqrt{3}-3-\sqrt{3}$

    $=-2$

    Bình luận

Viết một bình luận