T = 1/1×2 + 1/2×3 + 1/3×4 + … + 1/99×100 13/07/2021 Bởi Ruby T = 1/1×2 + 1/2×3 + 1/3×4 + … + 1/99×100
T = `\frac{1}{1×2}` +$\frac{1}{2×3}$ +$\frac{1}{3×4}$ + …. + $\frac{1}{99×100}$ ta có : $\frac{1}{1 x 2}$ = `1/1` – `1/2` $\frac{1}{2 x 3}$ = `1/2` – `1/3` $\frac{1}{3 x 4}$ = `1/3` – `1/4` ……….. $\frac{1}{99 x 100}$ = `1/99` – `1/100` ⇒ T = `\frac{1}{1×2}` +$\frac{1}{2×3}$ +$\frac{1}{3×4}$ + …. + $\frac{1}{99×100}$ = `1/1` – `1/2` + `1/2` – `1/3` + `1/3` – `1/4` +….. + `1/99` – `1/100` = `1/1` – `1/100` = `100/100` – `1/100` = `99/100` Vậy T = `99/100` Bình luận
`T = 1/(1xx2) + 1/(2xx3) + 1/(3xx4) + … + 1/(99xx100)` `= 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 + … + 1/99 – 1/100` `= 1 – 1/100` `= 100/100 – 1/100` `= 99/100` Bình luận
T = `\frac{1}{1×2}` +$\frac{1}{2×3}$ +$\frac{1}{3×4}$ + …. + $\frac{1}{99×100}$
ta có :
$\frac{1}{1 x 2}$ = `1/1` – `1/2`
$\frac{1}{2 x 3}$ = `1/2` – `1/3`
$\frac{1}{3 x 4}$ = `1/3` – `1/4`
………..
$\frac{1}{99 x 100}$ = `1/99` – `1/100`
⇒ T = `\frac{1}{1×2}` +$\frac{1}{2×3}$ +$\frac{1}{3×4}$ + …. + $\frac{1}{99×100}$
= `1/1` – `1/2` + `1/2` – `1/3` + `1/3` – `1/4` +….. + `1/99` – `1/100`
= `1/1` – `1/100`
= `100/100` – `1/100`
= `99/100`
Vậy T = `99/100`
`T = 1/(1xx2) + 1/(2xx3) + 1/(3xx4) + … + 1/(99xx100)`
`= 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 + … + 1/99 – 1/100`
`= 1 – 1/100`
`= 100/100 – 1/100`
`= 99/100`