∀ tam giác ABC: S= √((vecto AB ² x vecto AC ²)-(vectoAB x vectoAC) ²) 12/11/2021 Bởi Ximena ∀ tam giác ABC: S= √((vecto AB ² x vecto AC ²)-(vectoAB x vectoAC) ²)
Giải thích các bước giải: Ta có: $A=\sqrt{(\vec{AB})^2\cdot (\vec{AC})^2-(\vec{AB}\cdot \vec{AC})^2}$ $\to A=\sqrt{AB^2\cdot AC^2-(AB\cdot AC\cdot \cos\widehat{BAC})^2}$ $\to A=\sqrt{AB^2\cdot AC^2-AB^2\cdot AC^2\cdot \cos^2\widehat{BAC}}$ $\to A=\sqrt{AB^2\cdot AC^2(1- \cos^2\widehat{BAC})}$ $\to A=\sqrt{AB^2\cdot AC^2\cdot \sin^2\widehat{BAC}}$ $\to A=AB\cdot AC\cdot \sin\widehat{BAC}$ Mà $S_{ABC}=\dfrac12AB\cdot AC\cdot \sin\widehat{BAC}$ $\to S=\dfrac12A$ $\to S=\dfrac12\sqrt{(\vec{AB})^2\cdot (\vec{AC})^2-(\vec{AB}\cdot \vec{AC})^2}$ Bình luận
Ta có: $sin^2A+cos^2A=1$ <=> $sinA=\sqrt{1-cos^2A}$ <=> $\frac{1}{2}AB.AC.sinA=\frac{1}{2}AB.AC.\sqrt{1-cos^2A}$ <=> $S=\frac{1}{2}.\sqrt{AB^2.AC^2.(1-cos^2A)}$ <=> $S=\frac{1}{2}.\sqrt{AB^2.AC^2.-AB^2.AC^2.cos^2A)}$ <=> $S=\frac{1}{2}.\sqrt{(\vec{AB})^2.(\vec{AC})^2-(\vec{AB}.\vec{AB})^2}$ $[DPCM]$ Bình luận
Giải thích các bước giải:
Ta có:
$A=\sqrt{(\vec{AB})^2\cdot (\vec{AC})^2-(\vec{AB}\cdot \vec{AC})^2}$
$\to A=\sqrt{AB^2\cdot AC^2-(AB\cdot AC\cdot \cos\widehat{BAC})^2}$
$\to A=\sqrt{AB^2\cdot AC^2-AB^2\cdot AC^2\cdot \cos^2\widehat{BAC}}$
$\to A=\sqrt{AB^2\cdot AC^2(1- \cos^2\widehat{BAC})}$
$\to A=\sqrt{AB^2\cdot AC^2\cdot \sin^2\widehat{BAC}}$
$\to A=AB\cdot AC\cdot \sin\widehat{BAC}$
Mà $S_{ABC}=\dfrac12AB\cdot AC\cdot \sin\widehat{BAC}$
$\to S=\dfrac12A$
$\to S=\dfrac12\sqrt{(\vec{AB})^2\cdot (\vec{AC})^2-(\vec{AB}\cdot \vec{AC})^2}$
Ta có: $sin^2A+cos^2A=1$
<=> $sinA=\sqrt{1-cos^2A}$
<=> $\frac{1}{2}AB.AC.sinA=\frac{1}{2}AB.AC.\sqrt{1-cos^2A}$
<=> $S=\frac{1}{2}.\sqrt{AB^2.AC^2.(1-cos^2A)}$
<=> $S=\frac{1}{2}.\sqrt{AB^2.AC^2.-AB^2.AC^2.cos^2A)}$
<=> $S=\frac{1}{2}.\sqrt{(\vec{AB})^2.(\vec{AC})^2-(\vec{AB}.\vec{AB})^2}$ $[DPCM]$