tập hợp các giá trị m để hàm số
y = mx³ – x² +3x +m-2 đồng biến trên (-3;0)
A) [-1/3; 0)
B) (-1/3 ;+ ∞)
C) (- ∞; -1/3)
D) [-1/3 ; + ∞)
giải chi tiết nhé
tập hợp các giá trị m để hàm số
y = mx³ – x² +3x +m-2 đồng biến trên (-3;0)
A) [-1/3; 0)
B) (-1/3 ;+ ∞)
C) (- ∞; -1/3)
D) [-1/3 ; + ∞)
giải chi tiết nhé
Đáp án: $D$
Giải thích các bước giải:
Ta có:
$y’=3mx^2-2x+3$
Để hàm số đồng biến trên $(-3,0)$
$\to y’\ge 0, x\in(-3, 0)$
$\to 3mx^2-2x+3\ge 0$
$\to 3mx^2\ge 2x-3$
$\to 3m\ge \dfrac{2x-3}{x^2}$
Xét hàm số $y=\dfrac{2x-3}{x^2}$
$\to y+1=\dfrac{2x-3}{x^2}+1$
$\to y+1=\dfrac{2x-3+x^2}{x^2}$
$\to y+1=\dfrac{(x+3)(x-1)}{x^2}<0,\quad\forall x\in (-3, 0)$
$\to y<-1$
Để hàm số đồng biến trên $(-3, 0)$
$\to 3m\ge -1$
$\to m\ge -\dfrac13$
$\to m\in [-\dfrac13, +\infty)$