Thách các mod đây làm đc bài này ^^ so sánh 2 phân số 2020^2019 +1 / 2020^2020 – 1 và 2020^2018+1 / 2020^2019 -1 13/11/2021 Bởi Arianna Thách các mod đây làm đc bài này ^^ so sánh 2 phân số 2020^2019 +1 / 2020^2020 – 1 và 2020^2018+1 / 2020^2019 -1
Đáp án: Giải thích các bước giải: Đặt `M = (2020^2019+1)/(2020^2020-1)` `=> 2020M = (2020^2020+2020)/(2020^2020-1) = (2020^2020-1+2021)/(2020^2020-1) = (1 + 2021)/(2020^2020-1)` Đặt `N = 2020^2018+1/2020^2019-1` `=> 2020N = (2020^2019+2020)/(2020^2019-1) = (2020^2019-1+2021)/(2020^2019-1) = (1 + 2021)/(2020^2019-1)` Vì `2021/(2020^2020-1) < 2021/(2020^2019-1)` nên `(1 + 2021)/(2020^2020-1) < (1 + 2021)/(2020^2019-1)` `=> 2020M > 2020N` hay `M > N` Vậy `M > N.` Bình luận
Đặt $A = \dfrac{2020^{2019}+1}{2020^{2020}-1}$ $\to 2020A = \dfrac{2020^{2020}+2020}{2020^{2020}-1}$ $ = 1+ \dfrac{2021}{2020^{2020}-1}$ $B = \dfrac{2020^{2018}+1}{2020^{2019}-1}$ $\to 2020.B = \dfrac{2020^{2019}+2020}{2020^{2019}-1}$ $ = 1+\dfrac{2021}{2020^{2019}-1}$ Vì $\dfrac{2021}{2020^{2020}-1} < \dfrac{2021}{2020^{2019}-1}$ $\to 1+\dfrac{2021}{2020^{2020}-1} < 1+\dfrac{2021}{2020^{2019}-1}$ Hay $A<B$ Bình luận
Đáp án:
Giải thích các bước giải:
Đặt `M = (2020^2019+1)/(2020^2020-1)`
`=> 2020M = (2020^2020+2020)/(2020^2020-1) = (2020^2020-1+2021)/(2020^2020-1) = (1 + 2021)/(2020^2020-1)`
Đặt `N = 2020^2018+1/2020^2019-1`
`=> 2020N = (2020^2019+2020)/(2020^2019-1) = (2020^2019-1+2021)/(2020^2019-1) = (1 + 2021)/(2020^2019-1)`
Vì `2021/(2020^2020-1) < 2021/(2020^2019-1)`
nên `(1 + 2021)/(2020^2020-1) < (1 + 2021)/(2020^2019-1)`
`=> 2020M > 2020N`
hay `M > N`
Vậy `M > N.`
Đặt $A = \dfrac{2020^{2019}+1}{2020^{2020}-1}$
$\to 2020A = \dfrac{2020^{2020}+2020}{2020^{2020}-1}$
$ = 1+ \dfrac{2021}{2020^{2020}-1}$
$B = \dfrac{2020^{2018}+1}{2020^{2019}-1}$
$\to 2020.B = \dfrac{2020^{2019}+2020}{2020^{2019}-1}$
$ = 1+\dfrac{2021}{2020^{2019}-1}$
Vì $\dfrac{2021}{2020^{2020}-1} < \dfrac{2021}{2020^{2019}-1}$
$\to 1+\dfrac{2021}{2020^{2020}-1} < 1+\dfrac{2021}{2020^{2019}-1}$
Hay $A<B$