Tìm x: 1, 2x^2 = 3x 2, (x-5)^3 = x-5 3, |x-1|+x = 1 4, |x-5|+x=1

Tìm x:
1, 2x^2 = 3x
2, (x-5)^3 = x-5
3, |x-1|+x = 1
4, |x-5|+x=1

0 bình luận về “Tìm x: 1, 2x^2 = 3x 2, (x-5)^3 = x-5 3, |x-1|+x = 1 4, |x-5|+x=1”

  1. `a)`  `2x^2=3x`

    `<=>2x^2-3x=0`

    `<=>x(2x-3)=0`

    `<=>` \(\left[ \begin{array}{l}x=0\\2x-3=0\end{array} \right.\)`<=>` \(\left[ \begin{array}{l}x=0\\2x=3\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}x=0\\x=\dfrac{3}{2}\end{array} \right.\) 

    Vậy `x=0;x=3/2`

    `b)`   `(x-5)^3=x-5`

    `<=>(x-5)^3-x+5=0`

    `<=>(x-5)^3-(x-5)=0`

    `<=>(x-5).[(x-5)^2-1]=0`

    `<=>(x-5).(x^2-10x+25-1)=0`

    `<=>(x-5).(x^2-10x+24)=0`

    `<=>(x-5).(x^2-6x-4x+24)=0`

    `<=>(x-5).[(x^2-6x)-(4x-24)]=0`

    `<=>(x-5).[x(x-6)-4(x-6)]=0`

    `<=>(x-5)(x-6)(x-4)=0`

    `<=>` \(\left[ \begin{array}{l}x-5=0\\x-6=0\\x-4=0\end{array} \right.\)`<=>` \(\left[ \begin{array}{l}x=5\\x=6\\x=4\end{array} \right.\) 

    Vậy `x=5;x=6;x=4`

    `c)`   `|x-1|+x=1`

    `<=>|x-1|=1-x`    ĐKXĐ: `x\leq1`

    `<=>` \(\left[ \begin{array}{l}x-1=1-x\\x-1=-(1-x)\end{array} \right.\)`<=>` \(\left[ \begin{array}{l}x+x=1+1\\x-1=-1+x\end{array} \right.\)`<=>` \(\left[ \begin{array}{l}2x=2\\x-x=-1+1\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}x=1(\text{thoả mãn})\\0x=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=1\\x∈R\end{array} \right.\) 

    Vậy `x\leq1`

    `d)`  `|x-5|+x=1`

    `<=>|x-5|=1-x`   Điều kiện: `x\leq1`

    `<=>` \(\left[ \begin{array}{l}x-5=1-x\\x-5=-(1-x)\end{array} \right.\)`<=>` \(\left[ \begin{array}{l}x+x=1+5\\x-5=-1+x\end{array} \right.\)`<=>` \(\left[ \begin{array}{l}2x=6\\x-x=-1+5\end{array} \right.\)`<=>` \(\left[ \begin{array}{l}x=3(\text{loại})\\0x=4(\text{vô lý})\end{array} \right.\)

    Vậy ta không tìm được giá trị nào của `x`

    Bình luận
  2. Đáp án:

    1, `2x^2 = 3x`

       `2x^2 – 3x = 0`

       `x(2x – 3)=0`

    ⇒\(\left[ \begin{array}{l}x=0\\2x – 3 =0\end{array} \right.\) 

    ⇒\(\left[ \begin{array}{l}x=0\\x=3/2\end{array} \right.\) 

    Vậy `x ∈{ 0 ; 3/2}`

    2, `(x-5)^3 = x – 5`

       `(x-5)^3 – (x-5) = 0`

       `(x-5).((x-5)^2 – 1)=0`

    ⇒\(\left[ \begin{array}{l}x – 5  = 0\\(x-5)² – 1 = 0\end{array} \right.\) 

    ⇒\(\left[ \begin{array}{l}x=5\\x= 4 hoặc x = 6\end{array} \right.\) 

    Vậy` x ∈{ 4 ; 5 ; 6}`

    3, `| x – 1| + x = 1`

       `|x – 1|         = 1 – x`

    ⇒\(\left[ \begin{array}{l}x – 1 = 1 – x\\x – 1 = -1 + x\end{array} \right.\) 

    ⇒\(\left[ \begin{array}{l}x=1\\0x = -2( Vô lí)\end{array} \right.\) 

    Vậy `x = 1`

    4, `|x-5|+x=1`

       `| x – 5|  = 1 – x`

    ⇒\(\left[ \begin{array}{l}x – 5 = 1 – x\\x – 5 =-1 + x\end{array} \right.\) 

    ⇒\(\left[ \begin{array}{l}x=3(Loại)\\0x = 4(Vô lí)\end{array} \right.\) 

    Vậy `x ∈ {∅}`

    Bình luận

Viết một bình luận