Tìm x: 1+2+3+4+…+x=5050 2+4+6+8+…+2x=110 |x+5050|=5050 12/07/2021 Bởi Lydia Tìm x: 1+2+3+4+…+x=5050 2+4+6+8+…+2x=110 |x+5050|=5050
Đáp án: `a,` `1 + 2 + 3 + 4 + … + x = 5050` `-> (x + 1) × x ÷ 2 = 5050` `-> (x + 1) ÷ x = 5050 × 2` `-> (x + 1) ÷ x = 10100` `-> (x + 1) ÷ x = 100 × 101` `-> (x + 1) ÷ x = (100 +1) × 100` `-> x = 100` Vậy `x = 100` $\\$ `b,` `2 + 4 + 6 + 8 + … + 2x = 110` `-> 2 ×1 + 2× 2+ 2×3+2×4+…+2×1=110` `-> 2 [1 + 2 + 3 + 4 + … + x] = 110` `-> 1 + 2 + 3 + 4 + … + x = 110 ÷ 2` `-> (x + 1) × x ÷ 2 = 55` `-> (x + 1) × x = 55 × 2` `-> (x + 1) × x = 110` `-> (x + 1) × x = 11 × 10` `-> (x + 1) × x = (10 + 1) × 10` `-> x = 10` Vậy `x = 10` $\\$ `c,` `|x + 5050| = 5050` `->` \(\left[ \begin{array}{l}x+5050=5050\\x+5050=-5050\end{array} \right.\) `->` \(\left[ \begin{array}{l}x=5050-5050\\x=-5050-5050\end{array} \right.\) `->` \(\left[ \begin{array}{l}x=0\\x=-10100\end{array} \right.\) Vậy `x = 0` hoặc `x = -10100` Bình luận
Đáp án+Giải thích các bước giải: `1+2+3+4+..+x=5050` `<=>x.(x+1):2 = 5050` `<=> x.(x+1) = 5050.2` `<=>x.(x+1)=10100` Ta thấy `101000=101.100=(100+1).100` `=> x = 100` Vậy `x=100` `2+4+6+8+…+2x=110` `<=> 2(1+2+4+…+x)=110` `<=>1+2+4+…+x=110:2` `<=>1+2+4+…+x= 55` `<=> x.(x+1):2=55` `<=> x.(x+1)=110` Ta thấy `110=11.10=(10+1).10` `=> x = 10` Vậy `x=10` `|x+5050|=5050` `<=>x+5050=5050` hoặc `x+5050=-5050` `+) x+5050=5050<=> x =0` `+) x+5050=-5050<=> x=-10100` Vậy `x∈{0; 10100}` Bình luận
Đáp án:
`a,`
`1 + 2 + 3 + 4 + … + x = 5050`
`-> (x + 1) × x ÷ 2 = 5050`
`-> (x + 1) ÷ x = 5050 × 2`
`-> (x + 1) ÷ x = 10100`
`-> (x + 1) ÷ x = 100 × 101`
`-> (x + 1) ÷ x = (100 +1) × 100`
`-> x = 100`
Vậy `x = 100`
$\\$
`b,`
`2 + 4 + 6 + 8 + … + 2x = 110`
`-> 2 ×1 + 2× 2+ 2×3+2×4+…+2×1=110`
`-> 2 [1 + 2 + 3 + 4 + … + x] = 110`
`-> 1 + 2 + 3 + 4 + … + x = 110 ÷ 2`
`-> (x + 1) × x ÷ 2 = 55`
`-> (x + 1) × x = 55 × 2`
`-> (x + 1) × x = 110`
`-> (x + 1) × x = 11 × 10`
`-> (x + 1) × x = (10 + 1) × 10`
`-> x = 10`
Vậy `x = 10`
$\\$
`c,`
`|x + 5050| = 5050`
`->` \(\left[ \begin{array}{l}x+5050=5050\\x+5050=-5050\end{array} \right.\)
`->` \(\left[ \begin{array}{l}x=5050-5050\\x=-5050-5050\end{array} \right.\)
`->` \(\left[ \begin{array}{l}x=0\\x=-10100\end{array} \right.\)
Vậy `x = 0` hoặc `x = -10100`
Đáp án+Giải thích các bước giải:
`1+2+3+4+..+x=5050`
`<=>x.(x+1):2 = 5050`
`<=> x.(x+1) = 5050.2`
`<=>x.(x+1)=10100`
Ta thấy `101000=101.100=(100+1).100`
`=> x = 100`
Vậy `x=100`
`2+4+6+8+…+2x=110`
`<=> 2(1+2+4+…+x)=110`
`<=>1+2+4+…+x=110:2`
`<=>1+2+4+…+x= 55`
`<=> x.(x+1):2=55`
`<=> x.(x+1)=110`
Ta thấy `110=11.10=(10+1).10`
`=> x = 10`
Vậy `x=10`
`|x+5050|=5050`
`<=>x+5050=5050` hoặc `x+5050=-5050`
`+) x+5050=5050<=> x =0`
`+) x+5050=-5050<=> x=-10100`
Vậy `x∈{0; 10100}`