tìm x `1/3 + 1/6 + 1/10 + ….. + 2/(x (x + 1) ) = 2013/2015` 21/09/2021 Bởi Aubrey tìm x `1/3 + 1/6 + 1/10 + ….. + 2/(x (x + 1) ) = 2013/2015`
`1/3+1/6+1/10+…+2/(x(x+1)) =2013/2015` `1/3+1/6+1/10+…+1/(x(x+1):2) =2013/2015` `2/6+2/12+2/20+…+2/(x(x+1))=2013/2015` `2(1/2.3+1/3.4+1/4.5+…+1/(x(x+1)))=2013/2015` `2(1/2-1/3+1/3-1/4+1/4-1/5+…+1/x-1/(x+1))=2013/2015` `2(1/2-1/(x+1))=2013/2015` `1/2-1/(x+1)=2013/2015:2` `1/2-1/(x+1)=2013/4030` `1/(x+1)=1/2-2013/4030` `1/(x+1)=1/2015` `x+1=2015` `x=2015-1` `x=2014` Vậy `x=2014`. Bình luận
`1/3 + 1/6 + 1/10 + … + 2/(x(x + 1)) =2013/2015` `⇔2/6 +2/12 + 2/20 + … + 2/(x(x + 1)) =2013/2015` `⇔2/2.3 + 2/3.4 + 2/4.5 + … +2/(x(x + 1)) =2013/2015` `⇔2.(1/2.3 + 1/3.4 + … +1/(x (x+1))) = 2013/2015` `⇔ 2.(1/2 – 1/3 + 1/3 – 1/4 + … + 1/x – 1/(x + 1)) = 2013/2015` `⇔2(1/2 – 1/(x + 1)) = 2013/2015` `⇔1/2 – 1/(x + 1) = 2013/2015 : 2` `⇔1/2 – 1/(x + 1) = 2013/4030` `⇔ 1/(x + 1) = 1/2 – 2013/4030` `⇔1/(x + 1) =2015/4030 – 2013/4030` `⇔ 1/(x + 1) = 1/1015` `⇔ x + 1 . 1 = 1 . 1015` `⇔x + 1 = 1015` `⇔x = 2015 – 1` `⇔x =2014` Bình luận
`1/3+1/6+1/10+…+2/(x(x+1)) =2013/2015`
`1/3+1/6+1/10+…+1/(x(x+1):2) =2013/2015`
`2/6+2/12+2/20+…+2/(x(x+1))=2013/2015`
`2(1/2.3+1/3.4+1/4.5+…+1/(x(x+1)))=2013/2015`
`2(1/2-1/3+1/3-1/4+1/4-1/5+…+1/x-1/(x+1))=2013/2015`
`2(1/2-1/(x+1))=2013/2015`
`1/2-1/(x+1)=2013/2015:2`
`1/2-1/(x+1)=2013/4030`
`1/(x+1)=1/2-2013/4030`
`1/(x+1)=1/2015`
`x+1=2015`
`x=2015-1`
`x=2014`
Vậy `x=2014`.
`1/3 + 1/6 + 1/10 + … + 2/(x(x + 1)) =2013/2015`
`⇔2/6 +2/12 + 2/20 + … + 2/(x(x + 1)) =2013/2015`
`⇔2/2.3 + 2/3.4 + 2/4.5 + … +2/(x(x + 1)) =2013/2015`
`⇔2.(1/2.3 + 1/3.4 + … +1/(x (x+1))) = 2013/2015`
`⇔ 2.(1/2 – 1/3 + 1/3 – 1/4 + … + 1/x – 1/(x + 1)) = 2013/2015`
`⇔2(1/2 – 1/(x + 1)) = 2013/2015`
`⇔1/2 – 1/(x + 1) = 2013/2015 : 2`
`⇔1/2 – 1/(x + 1) = 2013/4030`
`⇔ 1/(x + 1) = 1/2 – 2013/4030`
`⇔1/(x + 1) =2015/4030 – 2013/4030`
`⇔ 1/(x + 1) = 1/1015`
`⇔ x + 1 . 1 = 1 . 1015`
`⇔x + 1 = 1015`
`⇔x = 2015 – 1`
`⇔x =2014`