Tìm x: $(2x+1)(5x-1)= $$20x^{2}$ $-16x-1$

Tìm x:
$(2x+1)(5x-1)= $$20x^{2}$ $-16x-1$

0 bình luận về “Tìm x: $(2x+1)(5x-1)= $$20x^{2}$ $-16x-1$”

  1. Đáp án:

     

    Giải thích các bước giải:

     `(2x+1)(5x-1)=20x^2-16x-1`

    `⇔10x^2-2x+5x-1-20x^2+16x+1=0`

    `⇔-10x^2+19x=0`

    `⇔x(-10x+19)=0`

    `⇔`\(\left[ \begin{array}{l}x=0\\-10x+19=0\end{array} \right.\) 

    `⇔`\(\left[ \begin{array}{l}x=0\\-10x=-19\end{array} \right.\) 

    `⇔`\(\left[ \begin{array}{l}x=0\\x=\frac{19}{10}\end{array} \right.\)

    Vậy `x∈{0;{19}/{10}}`

    Bình luận
  2. `Pt ⇔ 10x^2 – 2x + 5x – 1 = 20x^2 – 16x – 1`

    `⇔ 10x^2 – 19x = 0`

    `⇔ x(10x – 19) = 0`

    `⇔` \(\left[ \begin{array}{l}x=0\\10x-19=0\end{array} \right.\)

    `⇔ \(\left[ \begin{array}{l}x=0\\10x=19\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=0\\x=19/10\end{array} \right.\) 

     

    Bình luận

Viết một bình luận