Tìm x
x ³ – 25x = 0
x ³ + 4x ² + x + 4 = 0
x ³ + x ² + x + 1 = 0
( 4x + 1) ² = ( 6- 2x) ² = 0
TÌM MIN,MAX
H= x ² + 2y ² + 2xy – y+ 1
Tìm x
x ³ – 25x = 0
x ³ + 4x ² + x + 4 = 0
x ³ + x ² + x + 1 = 0
( 4x + 1) ² = ( 6- 2x) ² = 0
TÌM MIN,MAX
H= x ² + 2y ² + 2xy – y+ 1
Đáp án:
Giải thích các bước giải:
a,⇔x(x²-25)=0
⇔\(\left[ \begin{array}{l}x²=0\\x²-25=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=0\\x=±5\end{array} \right.\)
b,⇔x²(x+4)+x+4=0
⇔(x²+1)(x+4)=0
⇔\(\left[ \begin{array}{l}x²+1=0\\x+4=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=-1(vô lí) \\x=-4\end{array} \right.\)
c,x²(x+1)+x+1=0
⇔(x²+1)(x+1)=0
⇔\(\left[ \begin{array}{l}x²+1=0\\x+1=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=-1(vô lí) \\x=-1\end{array} \right.\)
H=x²+2xy+y²+y²-y+$\frac{1}{4}$ -$\frac{1}{4}$
H=(x+y)²+(y-$\frac{1}{2}$)²-$\frac{1}{4}$
ta xét (x+y)²$\geq$ 0
(y-$\frac{1}{2}$)²$\geq$ 0
(x+y)²+(y-$\frac{1}{2}$)²$\geq$ 0
H$\geq$ -$\frac{1}{4}$
dấu = xra ⇔ x=-y
y=$\frac{1}{2}$