tìm x: x.(x+3)=0 (x+1)(x^2)=0 10+|x|+3|x| (-4)^2-3|x| 5x-7chia hết cho x 09/07/2021 Bởi Peyton tìm x: x.(x+3)=0 (x+1)(x^2)=0 10+|x|+3|x| (-4)^2-3|x| 5x-7chia hết cho x
Đáp án: a) \(\left[ \begin{array}{l}x = 0\\x = – 3\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a)x\left( {x + 3} \right) = 0\\ \to \left[ \begin{array}{l}x = 0\\x + 3 = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 0\\x = – 3\end{array} \right.\\b)\left( {x + 1} \right){x^2} = 0\\ \to \left[ \begin{array}{l}x + 1 = 0\\{x^2} = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = – 1\\x = 0\end{array} \right.\\c)5x – 7 \vdots x\\ \to 7 \vdots x\\ \to x \in U\left( 7 \right)\\ \to \left[ \begin{array}{l}x = 7\\x = 1\end{array} \right.\end{array}\) Bình luận
Đáp án:
a) \(\left[ \begin{array}{l}
x = 0\\
x = – 3
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)x\left( {x + 3} \right) = 0\\
\to \left[ \begin{array}{l}
x = 0\\
x + 3 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 0\\
x = – 3
\end{array} \right.\\
b)\left( {x + 1} \right){x^2} = 0\\
\to \left[ \begin{array}{l}
x + 1 = 0\\
{x^2} = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = – 1\\
x = 0
\end{array} \right.\\
c)5x – 7 \vdots x\\
\to 7 \vdots x\\
\to x \in U\left( 7 \right)\\
\to \left[ \begin{array}{l}
x = 7\\
x = 1
\end{array} \right.
\end{array}\)