tim x: 6x(x-2012)+x-2012=0 x mu 2 +8x=0 x mu 2 -7x=0

tim x:
6x(x-2012)+x-2012=0
x mu 2 +8x=0
x mu 2 -7x=0

0 bình luận về “tim x: 6x(x-2012)+x-2012=0 x mu 2 +8x=0 x mu 2 -7x=0”

  1.     6x(x-2012)+x-2012=0

    ⇔ (6x+1)(x-2012) = 0

    ⇔ \(\left[ \begin{array}{l}6x+1=0\\x-2012=0\end{array} \right.\) 

    ⇔ \(\left[ \begin{array}{l}x=-1/6\\x=2012\end{array} \right.\) 

    __________________________

    x² +8x=0

    ⇔ x(x+8)=0

    ⇔ \(\left[ \begin{array}{l}x=0\\x+8=0\end{array} \right.\) 

    ⇔ \(\left[ \begin{array}{l}x=0\\x=-8\end{array} \right.\) 

    ________________________________

    x² -7x=0

    ⇔ x(x-7)=0

    ⇔ \(\left[ \begin{array}{l}x=0\\x-7=0\end{array} \right.\) 

    ⇔ \(\left[ \begin{array}{l}x=0\\x=7\end{array} \right.\) 

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    a) `6x(x-2012)+x-2012=0`

    `⇔ (6x+1)(x-2012)=0`

    `⇔` \(\left[ \begin{array}{l}6x+1=0\\x-2012=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=-\dfrac{1}{6}\\x=2012\end{array} \right.\) 

    Vậy `S={-\frac{1}{6};2012}` 

    b) `x^2+8x=0`

    `⇔ x(x+8)=0`

    `⇔` \(\left[ \begin{array}{l}x=0\\x+8=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=0\\x=-8\end{array} \right.\) 

    Vậy `S={0;-8}`

    c) `x^2-7x=0`

    `⇔ x(x-7)=0`

    `⇔` \(\left[ \begin{array}{l}x=0\\x-7=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=0\\x=7\end{array} \right.\) 

    Vậy `S={0;7}`

    Bình luận

Viết một bình luận