tim x: 6x(x-2012)+x-2012=0 x mu 2 +8x=0 x mu 2 -7x=0 10/08/2021 Bởi Ruby tim x: 6x(x-2012)+x-2012=0 x mu 2 +8x=0 x mu 2 -7x=0
6x(x-2012)+x-2012=0 ⇔ (6x+1)(x-2012) = 0 ⇔ \(\left[ \begin{array}{l}6x+1=0\\x-2012=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=-1/6\\x=2012\end{array} \right.\) __________________________ x² +8x=0 ⇔ x(x+8)=0 ⇔ \(\left[ \begin{array}{l}x=0\\x+8=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=0\\x=-8\end{array} \right.\) ________________________________ x² -7x=0 ⇔ x(x-7)=0 ⇔ \(\left[ \begin{array}{l}x=0\\x-7=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=0\\x=7\end{array} \right.\) Bình luận
Đáp án: Giải thích các bước giải: a) `6x(x-2012)+x-2012=0` `⇔ (6x+1)(x-2012)=0` `⇔` \(\left[ \begin{array}{l}6x+1=0\\x-2012=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=-\dfrac{1}{6}\\x=2012\end{array} \right.\) Vậy `S={-\frac{1}{6};2012}` b) `x^2+8x=0` `⇔ x(x+8)=0` `⇔` \(\left[ \begin{array}{l}x=0\\x+8=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=0\\x=-8\end{array} \right.\) Vậy `S={0;-8}` c) `x^2-7x=0` `⇔ x(x-7)=0` `⇔` \(\left[ \begin{array}{l}x=0\\x-7=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=0\\x=7\end{array} \right.\) Vậy `S={0;7}` Bình luận
6x(x-2012)+x-2012=0
⇔ (6x+1)(x-2012) = 0
⇔ \(\left[ \begin{array}{l}6x+1=0\\x-2012=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=-1/6\\x=2012\end{array} \right.\)
__________________________
x² +8x=0
⇔ x(x+8)=0
⇔ \(\left[ \begin{array}{l}x=0\\x+8=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=0\\x=-8\end{array} \right.\)
________________________________
x² -7x=0
⇔ x(x-7)=0
⇔ \(\left[ \begin{array}{l}x=0\\x-7=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=0\\x=7\end{array} \right.\)
Đáp án:
Giải thích các bước giải:
a) `6x(x-2012)+x-2012=0`
`⇔ (6x+1)(x-2012)=0`
`⇔` \(\left[ \begin{array}{l}6x+1=0\\x-2012=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=-\dfrac{1}{6}\\x=2012\end{array} \right.\)
Vậy `S={-\frac{1}{6};2012}`
b) `x^2+8x=0`
`⇔ x(x+8)=0`
`⇔` \(\left[ \begin{array}{l}x=0\\x+8=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=0\\x=-8\end{array} \right.\)
Vậy `S={0;-8}`
c) `x^2-7x=0`
`⇔ x(x-7)=0`
`⇔` \(\left[ \begin{array}{l}x=0\\x-7=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=0\\x=7\end{array} \right.\)
Vậy `S={0;7}`