Tim x: a. 0,3+2.|4,5-x|=0,9 b. 0,75-1/4.|x+95|=11/24 03/08/2021 Bởi Ruby Tim x: a. 0,3+2.|4,5-x|=0,9 b. 0,75-1/4.|x+95|=11/24
Đáp án: Giải thích các bước giải: a) `0,3+2.|4,5-x|=0,9` `⇔ 2.|4,5-x|=0,6` `⇔ |4,5-x|=0,3` `⇔` \(\left[ \begin{array}{l}4,5-x=0,3\\4,5-x=-0,3\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=4,2\\x=4,8\end{array} \right.\) b) `0,75-\frac{1}{4}.|x+95|=\frac{11}{24}` `⇔ \frac{1}{4}.|x+95|=\frac{7}{24}` `⇔ |x+95|=\frac{7}{6}` `⇔` \(\left[ \begin{array}{l}x+95=\dfrac{7}{6}\\x+95=-\dfrac{7}{6}\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=-\dfrac{563}{6}\\x=-\dfrac{577}{6}\end{array} \right.\) Bình luận
Bạn tham khảo : Giải thích các bước giải : $a,$ $0,3 + 2.|4,5-x| = 0,9$ $⇒ 2.|4,5-x| = 0,6$ $⇒ |4,5-x| = 0,3$ ⇒ \(\left[ \begin{array}{l}4,5 -x = 0,3\\4,5-x=(-0,3)\end{array} \right.\) ⇒ \(\left[ \begin{array}{l}x = 4,2\\x =4,8\end{array} \right.\) Vậy $x ∈ \text{{4,2 ; 4,8}}$ $b,$ $0,75 – \dfrac{1}{4} . |x+95| = \dfrac{11}{24}$ $⇒ \dfrac{3}{4} – \dfrac{1}{4} . |x+95| = \dfrac{11}{24}$⇒ $\dfrac{1}{4} . |x+95| = \dfrac{7}{24}$ ⇒ $|x+95| = \dfrac{7}{6}$ ⇒ \(\left[ \begin{array}{l}x +95=\dfrac{7}{6}\\x +95=\dfrac{-7}{6}\end{array} \right.\) ⇒ \(\left[ \begin{array}{l}x =-\dfrac{9113}{6}\\x =-\dfrac{9127}{6}\end{array} \right.\) Vậy $x ∈$ {$-\dfrac{9113}{6} ; -\dfrac{9127}{6}$} Bình luận
Đáp án:
Giải thích các bước giải:
a) `0,3+2.|4,5-x|=0,9`
`⇔ 2.|4,5-x|=0,6`
`⇔ |4,5-x|=0,3`
`⇔` \(\left[ \begin{array}{l}4,5-x=0,3\\4,5-x=-0,3\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=4,2\\x=4,8\end{array} \right.\)
b) `0,75-\frac{1}{4}.|x+95|=\frac{11}{24}`
`⇔ \frac{1}{4}.|x+95|=\frac{7}{24}`
`⇔ |x+95|=\frac{7}{6}`
`⇔` \(\left[ \begin{array}{l}x+95=\dfrac{7}{6}\\x+95=-\dfrac{7}{6}\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=-\dfrac{563}{6}\\x=-\dfrac{577}{6}\end{array} \right.\)
Bạn tham khảo :
Giải thích các bước giải :
$a,$
$0,3 + 2.|4,5-x| = 0,9$
$⇒ 2.|4,5-x| = 0,6$
$⇒ |4,5-x| = 0,3$
⇒ \(\left[ \begin{array}{l}4,5 -x = 0,3\\4,5-x=(-0,3)\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}x = 4,2\\x =4,8\end{array} \right.\)
Vậy $x ∈ \text{{4,2 ; 4,8}}$
$b,$
$0,75 – \dfrac{1}{4} . |x+95| = \dfrac{11}{24}$
$⇒ \dfrac{3}{4} – \dfrac{1}{4} . |x+95| = \dfrac{11}{24}$
⇒ $\dfrac{1}{4} . |x+95| = \dfrac{7}{24}$
⇒ $|x+95| = \dfrac{7}{6}$
⇒ \(\left[ \begin{array}{l}x +95=\dfrac{7}{6}\\x +95=\dfrac{-7}{6}\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}x =-\dfrac{9113}{6}\\x =-\dfrac{9127}{6}\end{array} \right.\)
Vậy $x ∈$ {$-\dfrac{9113}{6} ; -\dfrac{9127}{6}$}