Tìm x a. 3.(x-2)-2x.(2-x)=0 b, (3-x) : ( $\frac{2}{3}$ .x +7) < 0 c, 3.x ² - $\frac{5}{3}$ =0

Tìm x
a. 3.(x-2)-2x.(2-x)=0
b, (3-x) : ( $\frac{2}{3}$ .x +7) < 0 c, 3.x ² - $\frac{5}{3}$ =0

0 bình luận về “Tìm x a. 3.(x-2)-2x.(2-x)=0 b, (3-x) : ( $\frac{2}{3}$ .x +7) < 0 c, 3.x ² - $\frac{5}{3}$ =0”

  1. Đáp án:

    a, Ta có : 

    `3(x – 2) – 2x(2 – x) = 0`

    ` <=> 3(x – 2) + 2x(x – 2) = 0`

    ` <=> (3 + 2x)(x – 2) = 0`

    <=> \(\left[ \begin{array}{l}3 + 2x = 0\\x – 2 = 0\end{array} \right.\) 

    <=> \(\left[ \begin{array}{l}x = -3/2\\x=2\end{array} \right.\) 

    Vậy `x = -3/2` và `x = 2`

    b, Ta có : 

    `(3 – x) : (2/3 . x + 7) < 0`

    <=> \(\left[ \begin{array}{l}3 – x < 0 ; 2/3 . x + 7 > 0\\3 – x > 0 ; 2/3 . x + 7 < 0\end{array} \right.\) 

    <=> \(\left[ \begin{array}{l}x > 3 ; x > -21/2\\x < 3 ; x < -21/2\end{array} \right.\) 

    <=> \(\left[ \begin{array}{l}x > 3 \\x < -21/2\end{array} \right.\)

    c, Ta có :

    `3.x^2 – 5/3 = 0`

    ` <=> 3.x^2 = 5/3`

    ` <=> x^2 = 5/9`

    ` <=> x = ± \sqrt{5/9}`

    Giải thích các bước giải:

     

    Bình luận
  2. $a$) $3.(x-2)-2x.(2-x)=0$

    $⇔ (3+2x)(x-2) = 0$

    $⇒$ \(\left[ \begin{array}{l}3+2x=0\\x-2=0\end{array} \right.\) 

    $⇔$ \(\left[ \begin{array}{l}x = -\dfrac{3}{2}\\x=2\end{array} \right.\) 

       Vậy $x$ $∈$ `{-3/2;2}`.

    $b$) `(3-x):(2/3 .x+7) < 0`

    `⇒` `3-x;2/3 .x+7` khác dấu

    $TH1$. $\left\{\begin{matrix} 3-x < 0& \\\dfrac{2}{3}x + 7 > 0& \end{matrix}\right.$

    $⇒$ $x>3$

    $TH2$. $\left\{\begin{matrix} 3-x > 0& \\\dfrac{2}{3}x + 7 < 0& \end{matrix}\right.$

    $⇒$ $x< \dfrac{21}{2}$

       Vậy $x>3;x < \dfrac{-21}{2}$.

    $c$) $3x^2 – \dfrac{5}{3} = 0$

    $⇔ 3x^2 = \dfrac{5}{3}$

    $⇔ x^2 = \dfrac{5}{9}$

    $⇔ x = ± \sqrt{\dfrac{5}{9}}$

      Vậy $x = ± \sqrt{\dfrac{5}{9}}$.

    Bình luận

Viết một bình luận