Tìm x a, ( x + 3/4 ) ² = 4/25 b, ( 4/7 – 1/2 x ) ³ = 8 C, x³ = -8 D, 9^x-1 = 1/9

Tìm x
a, ( x + 3/4 ) ² = 4/25
b, ( 4/7 – 1/2 x ) ³ = 8
C, x³ = -8
D, 9^x-1 = 1/9

0 bình luận về “Tìm x a, ( x + 3/4 ) ² = 4/25 b, ( 4/7 – 1/2 x ) ³ = 8 C, x³ = -8 D, 9^x-1 = 1/9”

  1. `a` , ( `x` `+` `3/4` ) ² `=` `4/25`

    ⇒ ( `x` `+` `3/4` ) ² `=` (`±2/5`) ²

    ⇒ `x` `+` `3/4` `=` `±2/5`

    Trường hợp 1:

    ⇒ `x` `+` `3/4` `=` `2/5`

    ⇒ `x` `=` `2/5` `-` `3/4`

    ⇒ `x` `=` `-7/20`

    Trường hợp 2:

    `x` `+` `3/4` `=` `-2/5`

    ⇒ `x` `=` `-2/5` `-` `3/4`

    ⇒ `x` `=` `-23/20`

    `b` , ( `4/7` `-` `1/2` `x` ) ³ `=` `8`

    ⇒ ( `4/7` `-` `1/2` `x` ) ³ `=` $2^{3}$ 

    ⇒  `4/7` `-` `1/2` `x` `=` `2`

    ⇒ `1/2` `x` `=` `4/7` `-` `2`

    ⇒ `1/2` `x` `=` `-10/7`

    ⇒ `x` `=` `-10/7` `:` `1/2`

    ⇒ `x` `=` `-20/7`

    `c` , $x^{3}$ `=` `-8`

    ⇒ $x^{3}$ `=` $-2^{3}$ 

    ⇒ `x` `=` `-2`

    `d` , $9^{x-1}$ `=` `1/9`

    ⇒ $9^{x-1}$ `=` $9^{-1}$ 

    ⇒ `x` `-` `1` `=` `-1`

    ⇒ `x` `=` `-1` `+` `1`

    ⇒ `x` `=` `0`

    Bình luận
  2. $a, ( x + \dfrac{3}{4} ) ² = \dfrac{4}{25}$

    $ ( x+ \dfrac{3}{4})²$ = $\frac{2²}{5²}$

    $ x + \dfrac{3}{4}$ = $±\dfrac{2}{5}$

    TH1:

    $ x + \dfrac{3}{4}$ = $\dfrac{2}{5}$ 

    $x = \dfrac{2}{5}$ – $\dfrac{3}{4}$

    $x =\dfrac{-7}{20} $

    TH2:

    $ x + \dfrac{3}{4} = -\dfrac{2}{5}$ 

    $x =-\dfrac{2}{5} -\dfrac{3}{4}$

    $x =\dfrac{-23}{20} $

    $b, ( \dfrac{4}{7} – \dfrac{1}{2}x ) ³ = 8$

    $( \dfrac{4}{7} -\dfrac{1}{2}x ) ³ = 2³$

    $\dfrac{4}{7} -\dfrac{1}{2}x = 2$

    $ -\dfrac{1}{2}x $=  2- $\dfrac{4}{7} $

    $ -\dfrac{1}{2}x$ = $\dfrac{10}{7} $

    $x = \dfrac{10}{7} $ : $\dfrac{-1}{2} $

    $x = \dfrac{20}{7}$

    $c, x³ = -8$

    $x³ = -2³$

    $x = -2$

    $D, 9^{x-1} =\dfrac{1}{9} $

    $9^{x-1} =9^{-1}$

    $x – 1 = -1 $

    $x = -1 +1 $

    $x = 0 $

    #no copy #

    Bình luận

Viết một bình luận