Tìm x a)4-11x+7x^2=x-1(x≠1) e)x^3-x=2x^2-2(x≠±1) 10/07/2021 Bởi Josephine Tìm x a)4-11x+7x^2=x-1(x≠1) e)x^3-x=2x^2-2(x≠±1)
Đáp án: b. x=2 Giải thích các bước giải: \(\begin{array}{l}a.4 – 11x + 7{x^2} = x – 1\\ \to 7{x^2} – 12x + 5 = 0\\ \to 7{x^2} – 7x – 5x + 5 = 0\\ \to 7x\left( {x – 1} \right) – 5\left( {x – 1} \right) = 0\\ \to \left( {x – 1} \right)\left( {7x – 5} \right) = 0\\ \to \left[ \begin{array}{l}x = 1\\x = \dfrac{5}{7}\end{array} \right.\\Do:x \ne 1\\ \to x = \dfrac{5}{7}\\b.{x^3} – x = 2{x^2} – 2\\ \to {x^3} – 2{x^2} – x + 2 = 0\\ \to {x^3} – {x^2} – {x^2} + x – 2x + 2 = 0\\ \to {x^2}\left( {x – 1} \right) – x\left( {x – 1} \right) – 2\left( {x – 1} \right) = 0\\ \to \left( {x – 1} \right)\left( {{x^2} – x – 2} \right) = 0\\ \to \left[ \begin{array}{l}x = 1\\\left( {x – 2} \right)\left( {x + 1} \right) = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\x = – 1\\x = 2\end{array} \right.\\Do:x \ne \pm 1\\ \to x = 2\end{array}\) Bình luận
Đáp án:
b. x=2
Giải thích các bước giải:
\(\begin{array}{l}
a.4 – 11x + 7{x^2} = x – 1\\
\to 7{x^2} – 12x + 5 = 0\\
\to 7{x^2} – 7x – 5x + 5 = 0\\
\to 7x\left( {x – 1} \right) – 5\left( {x – 1} \right) = 0\\
\to \left( {x – 1} \right)\left( {7x – 5} \right) = 0\\
\to \left[ \begin{array}{l}
x = 1\\
x = \dfrac{5}{7}
\end{array} \right.\\
Do:x \ne 1\\
\to x = \dfrac{5}{7}\\
b.{x^3} – x = 2{x^2} – 2\\
\to {x^3} – 2{x^2} – x + 2 = 0\\
\to {x^3} – {x^2} – {x^2} + x – 2x + 2 = 0\\
\to {x^2}\left( {x – 1} \right) – x\left( {x – 1} \right) – 2\left( {x – 1} \right) = 0\\
\to \left( {x – 1} \right)\left( {{x^2} – x – 2} \right) = 0\\
\to \left[ \begin{array}{l}
x = 1\\
\left( {x – 2} \right)\left( {x + 1} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
x = – 1\\
x = 2
\end{array} \right.\\
Do:x \ne \pm 1\\
\to x = 2
\end{array}\)
Chúc bạn học tốt